
LATEX TikZposter

Comparator-Adaptive

Convex Bandits

Dirk van der Hoeven

Ashok Cutkosky

Haipeng Luo

||u||
3/4 2/3

Linear loss Lipschitz loss Smooth loss

||u||

Expected regret bounds for:

Comparator-Adaptive

Convex Bandits

Dirk van der Hoeven

Ashok Cutkosky

Haipeng Luo

||u||
3/4 2/3

Linear loss Lipschitz loss Smooth loss

||u||

Expected regret bounds for:

Setting: Bandit Convex Optimization

The Bandit Convex Optimization setting proceeds in rounds t = 1, . . . T . In each
round t
1 the environment picks a Lipschitz loss function `t
2 the learner plays a randomized prediction wt ∈ W ⊆ Rd

3 the environment reveals `t(wt)
4 the learner suffers `t(wt)
Goal setting: control expected regret with respect to comparator u ∈ W

RT (u) = E

[
T∑
t=1

`t(wt)− `t(u)

]
Goal paper: regret that scales with ‖u‖.

Motivation
In the Full Information setting comparator-adaptive algorithms have been suc-
cessfully applied in several problems:
• deal with unconstrained domains (McMahan and Orabona, 2014)
• combining online algorithms (Cutkosky, 2019)
• obtaining better strongly adaptive algorithms (Jun et al., 2017)
• adaptive local differential privacy (Van der Hoeven, 2019)
But no comparator-adaptive algorithms exist for the Bandit Setting!

Results
Loss functions (L-Lipschitz) unconstrained settings constrained settings

Linear Õ
(
‖u‖dL

√
T
)

Õ
(
‖u‖cdL

√
T
)

Convex Õ
(
‖u‖L

√
dT

3
4

)
Õ
(
‖u‖cL

√
dT

3
4

)
Convex and β-smooth Õ

(
max{‖u‖2, ‖u‖}β(dLT)2

3

)
-

1/c is radius of the largest ball contained by W and c = O(d) at most. When W is a
ball c = 1.

Basis of Algorithm and Analysis

•Play wt = vtzt, vt controls the scale and zt controls the direction.
In the analysis we:
• split the analysis for learning of the direction of u, u

‖u‖ and the scale of u, ‖u‖
in two parts (Cutkosky and Orabona, 2018).

For linear losses:
〈vtzt − u, gt〉 = 〈vtzt − ‖u‖zt, gt〉 + ‖u‖〈zt −

u

‖u‖
, gt〉

Similar in spirit for convex losses, but with extra steps.
• assume that `t(0) is known
Reasonable assumption: loss for a nominal action often known.

Key Insights: Linear Loss

•With the split of direction and scale the scaling algorithm obtains full information
feedback:

As feedback we receive `t(wt) = 〈vtzt, gt〉. We can simply send `t(wt)
vt

to the scaling
algorithm to learn the appropriate scale of zt.
• In the constrained setting: constrain vt to [0, 1] rather than constraining vtzt
If zt ∈ W , then so is vtzt if vt ∈ [0, 1]. Result: you don’t have to project a
randomized vector.

Algorithm for Convex Losses

1: Input: Scaling algorithm AV , δ ∈ (0, 1], α ∈ [0, 1], domain Z ⊆ B, and learning
rate η

2: for t = 1 . . . T do
3: Get vt from AV
4: Sample st ∼ U(S)
5: Play wt = vt(zt + δst)
6: Set ĝt = d

vtδ
`t(wt)st

7: if `t is β-smooth then
8: Set ¯̀

t(v) = v〈zt, ĝt〉 + βδ2v2

9: else
10: Set ¯̀

t(v) = v〈zt, ĝt〉 + 2δL|v|
11: end if
12: Send ∂ ¯̀

t(vt) to algorithm AV as the t-th loss value
13: Update zt+1 = arg minz∈(1−α)Z η〈z, ĝt〉 + ‖zt − z‖2

2
14: end for

Key Insights for Lipschitz Losses

•Modify the estimate for the gradient:

ĝt = d

vtδ
`t(vtzt + vtδst)st

What if vt very small? Use `t(0) = 0 and Lipschitz assumption:
d

vtδ
|`t(wt)| =

d

vtδ
|`t(vt(zt + δst))− `t(0)| ≤ dL‖zt + δst‖2

δ
•New surrogate loss for learning the scale:

¯̀
t(v) = v〈zt, ĝt〉 + 2δL|v|︸ ︷︷ ︸

new part

Key Insights for Smooth Losses

•New surrogate loss for learning the scale:
¯̀
t(v) = v〈zt, ĝt〉 + βδ2v2︸ ︷︷ ︸

new part

Problem: ¯̀
t(v) is not Lipschitz if v ∈ R!

Solution: choose |v| ∈ [0, 1
δ3] and exploit that RT (0) = O(1).

If ‖u‖ ≤ 1
δ3 then no problem if we constrain v. If ‖u‖ > 1

δ3 then

E[RT (u)] = E[RT (0)] +
T∑
t=1

E[`t(0)− `t(u)] = O(1 + ‖u‖2LT).

Future work

•Get rid of c constant in constrained algorithms
•Get rid of assumption that `t(0) = known
•Comparator-adaptive algorithm for the smooth and constrained case with
Õ(‖u‖T 2/3) regret?
•Comparator-adaptive algorithm for strongly convex and smooth case with
Õ(‖u‖

√
T) regret?

