Comparator-Adaoplive
Convex Bandits

Setting: Bandit Convex Optimization

The Bandit Convex Optimization setting proceeds in rounds ¢t = 1,...7". In each
round ¢
1 the environment picks a Lipschitz loss function ¢;

2 the learner plays a randomized prediction w; € W C R?
3 the environment reveals £;(wy)

4 the learner suffers £;(w;)
Goal setting: control expected regret with respect to comparator u € WV

> l(wy) — b(u)

Goal paper: regret that scales with ||u||.

RT(’U,) =3

Motivation

In the Full Information setting comparator-adaptive algorithms have been suc-
cessfully applied in several problems:

e dcal with unconstrained domains (McMahan and Orabona, 2014)

e combining online algorithms (Cutkosky, 2019)

e obtaining better strongly adaptive algorithms (Jun et al., 2017)

e adaptive local differential privacy (Van der Hoeven, 2019)

But no comparator-adaptive algorithms exist for the Bandit Setting!

Loss functions (L-Lipschitz) unconstrained settings constrained settings
Linear O (\u|dL\/T> O (\u|ch\/T>
Convex O (| u| L\/gT%) O (| ul CL\/ET%)
Convex and fB-smooth O (maX{HuHQ, ||| }B(dLT)) -

1/c is radius of the largest ball contained by W and ¢ = O(d) at most. When W is a
ball ¢ = 1.

WD

Linear loss

@ . 3/4

Expected regret bounds for:

Lipschitz loss

Basis of Algorithm and Analysis

e Play w; = v;z4, vy controls the scale and z; controls the direction.

In the analysis we:

o split the analysis for learning of the direction of u, 2 and the scale of u, |2,
in two parts (Cutkosky and Orabona, 2018).

For linear losses:

U

(vizi —u, gr) = (Vizp — ||ul|z, gr) + ||u]|(z H

Similar in spirit for convex losses, but with extra steps.

e assume that £;(0) is known

Reasonable assumption: loss for a nominal action often known.

Key Insights: Linear Loss

,gt>
u|

e With the split of direction and scale the scaling algorithm obtains full information

feedback:

As feedback we receive £;(wy) = (v:24, g¢). We can simply send
algorithm to learn the appropriate scale of z;.

Ci(wy)

Uy

to the scaling

e [n the constrained setting: constrain v; to |0, 1| rather than constraining v;z;

If zz € W, then so is v;z; if v, € |0,1]. Result: you don’t have to project a

randomized vector.

Algorithm for Convex Losses

» fort=1...7T do
Get vy from Ay
Sample s; ~ U(S)
Play w; = vi(z; + d84)
Set g = %ét(wt)st
if /; is B-smooth then
Set £,(v) = v{zy, §) + BV

10:

11:

12:

13:

else

Set £4(v) = v{zy, G) + 26 L|v]

end if

Send 04,(vy) to algorithm Ay as the ¢-th loss value
Update zp11 = argmin, ¢,z n(z,g:) + ||zt — 2|[3

4. end for

1 Input: Scaling algorithm Ay, § € (0,1], a € |0, 1], domain Z C B, and learning
rate n

Smooth loss

A8 Universiteit
|) Leiden
’4’ The Netherlands

BOSTON

UNIVERSITY

=22 USC University of

outhern California

Key Insights for Lipschitz Losses

d

’Ut5

d

e Modify the estimate for the gradient:

g: =

d
—{
?)t(s t

—[li(wy)] :@\Et(vt(zt +08¢)) — £:(0)]

(Utzt + ’Ut(SSt)St

- What if vy very small? Use £;(0) = 0 and Lipschitz assumption:
< dLHZt + (SStHQ

e New surrogate loss for learning the scale:

l@(v) = v(z,gr) + 20L|v

new part

0

Key Insights for Smooth Losses

O(||w||T?/3) regret?

O(||w|[v/T) regret?

e New surrogate loss for learning the scale:

l(v) = v{zy, G) + 52521)2

new part

Problem: ¢,(v) is not Lipschitz if v € R
Solution: choose |v| € [0, 5] and exploit that Ry(0) = O(1).
If ||[u]| < 5 then no problem if we constrain v. If [Jul|| >

E[Rr(u)] = E[Rr(0)] + Y E[6(0) — (i(u)] = O(1 + |[u].LT).

Future work

e Get rid of ¢ constant in constrained algorithms
e Get 1id of assumption that ¢;(0) = known

e Comparator-adaptive algorithm for the smooth and constrained case with

e Comparator-adaptive algorithm for strongly convex and smooth case with

% then

