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Example Application Full Information

Football prediction. ADO Den Haag versus AFC Ajax.
We know that

ADO plays at home
There are 0 supporters for either side
Players of ADO Den Haag are valued 11.35 million euros
Players of AFC Ajax are valued 288.85 million euros

Who will win?

Probably AFC Ajax, but not absolutely certain.

If we gather this information for all eredivisie games, can we predict
perfectly? Probably not

Important: regardless of what we predict, we will see the true outcome
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Setting: Full Information

The online multiclass classification setting proceeds in rounds t = 1, . . . ,T .
In each round t
1 the environment picks an outcome yt ∈ {1, . . .K} and reveals a

feature vector xt ∈ Rd to the learner
2 the learner issues a (randomized) prediction ŷt

3 the environment reveals yt

4 the learner suffers 1[yt 6= ŷt ]

Goal: minimize the expected surrogate regret RT

RT = E

[ T∑
t=1

1[yt 6= ŷt ]
]
−

min
U

T∑
t=1

`(〈U ,xt〉︸ ︷︷ ︸
margin

, yt)
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Surrogate Loss with K = 2

surrogate loss

if margin postive predict 1,

 otherwise predict 2

zero-one loss
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Is regret a reasonable measure of performance?

Goal: minimize the expected surrogate regret RT

RT = E

[ T∑
t=1

1[yt 6= ŷt ]
]
−

 min
U

T∑
t=1

`(〈U ,xt〉, yt)︸ ︷︷ ︸
= 0 If model predicts perfectly


Translation: I want to be close to the performance of the best offline
version of the model.
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Example application bandit setting

You have to suggest a movie to friend from a list of movies you like (and
suppose there is only 1 movie in this list your friend will like). You know:

the length of your friend
the weight of your friend

Can you give the perfect suggestion?

probably not.

What is your strategy for the suggestion? mine: randomly select one
movie, I don’t have any information

Important: You don’t get feedback about what you should have
suggested
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Setting: Bandit

The bandit online multiclass classification setting proceeds in rounds
t = 1, . . . ,T . In each round t

1 the environment picks an outcome yt ∈ {1, . . .K} and reveals a
feature vector xt to the learner

2 the learner issues a (randomized) prediction ŷt

3 the environment reveals 1[yt 6= ŷt ]
4 the learner suffers 1[yt 6= ŷt ]

Goal: minimize the expected surrogate regret RT

RT = E

( T∑
t=1

1[yt 6= ŷt ]
)
−

min
U

T∑
t=1

`(〈U ,xt〉︸ ︷︷ ︸
margin

, yt)
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Results 1

Results for the full information setting

Algorithm RT Time (per round)
Standard first-order O(‖U‖

√
T ) O(dK )

Standard second-order O(e‖U‖dK ln(T )) O((dK )2)
Gaptron O(K‖U‖2) O(dK )
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Results 2

Results for the bandit setting

Algorithm E[RT ] Time (per round)
Standard first-order O((K )1/3T 2/3) O(dK )
Standard second-order O(K

√
dT ln(T )) O((dK )2)

Gaptron O(K
√
T ) O(dK )
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Old Analysis: Upper Bound Zero-One Loss with Surrogate

T∑
t=1

1[yt 6= ŷt ]− `(〈U ,xt〉, yt) =

 T∑
t=1

1[yt 6= ŷt ]− `(〈Wt ,xt〉, yt)︸ ︷︷ ︸
Very wastefull: bound by 0


+
( T∑

t=1
`(〈Wt ,xt〉, yt)− `(〈U ,xt〉, yt)

)

≤
T∑

t=1
`(〈Wt ,xt〉, yt)− `(〈U ,xt〉, yt)︸ ︷︷ ︸

controlled by OGD

≤‖U‖
2

2η + η

2

T∑
t=1
‖∇Wt `(〈Wt ,xt〉, yt)‖2

≤‖U‖X
√
T
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1[yt 6= ŷt ]− `(〈Wt ,xt〉, yt)︸ ︷︷ ︸
Very wastefull: bound by 0


+
( T∑

t=1
`(〈Wt ,xt〉, yt)− `(〈U ,xt〉, yt)

)

≤
T∑

t=1
`(〈Wt ,xt〉, yt)− `(〈U ,xt〉, yt)︸ ︷︷ ︸

controlled by OGD

≤‖U‖
2

2η + η

2

T∑
t=1
‖∇Wt `(〈Wt ,xt〉, yt)‖2

≤‖U‖X
√
T

Dirk van der Hoeven (Leiden University) Exploiting the Surrogate Gap 11 / 30



How to improve upon standard methods?

surrogate loss

if margin postive predict 1,

 otherwise predict 2

zero-one loss

0.0

0.5

1.0

1.5

2.0

-1.0 -0.5 0.0 0.5 1.0
margin
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Key Idea: when uncertain, randomize.

surrogate loss

Gaptron

Gaptron:  add randomness

to exploit surrogate gap

zero-one

0.0
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2.0

-1.0 -0.5 0.0 0.5 1.0

margin
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Gaptron Analysis: first steps

T∑
t=1

E [1[yt 6= ŷt ]]︸ ︷︷ ︸
Gaptron is random

− `(〈U ,xt〉, yt) =

( T∑
t=1

E [1[yt 6= ŷt ]]− `(〈Wt ,xt〉, yt)
)

+
T∑

t=1
`(〈Wt ,xt〉, yt)− `(〈U ,xt〉, yt)︸ ︷︷ ︸

controlled by OGD

≤ ‖U‖
2

2η

+

 T∑
t=1

E [1[yt 6= ŷt ]] + η

2‖∇Wt `(〈Wt ,xt〉, yt)‖2︸ ︷︷ ︸
Smaller than surrogate loss!

− `(〈Wt ,xt〉, yt)
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Gaptron Analysis: is that really smaller than surrogate loss?

surrogate loss

Gaptron

Shaded area represents

eta times norm of gradient

0.0
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1.0

1.5

2.0

-1.0 -0.5 0.0 0.5 1.0

margin
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Gaptron Analysis: wow, that is very useful!

T∑
t=1

E [1[yt 6= ŷt ]]− `(〈U ,xt〉, yt) ≤
‖U‖2

2η

+

 T∑
t=1

E [1[yt 6= ŷt ]] + η

2‖∇Wt `(〈Wt ,xt〉, yt)‖2︸ ︷︷ ︸
Smaller than surrogate loss!

− `(〈Wt ,xt〉, yt)


≤ KX 2‖U‖2

Full information before: ‖U‖X
√
T regret

Full information now: KX 2‖U‖2 regret
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Gaptron Analysis: wow, that is very useful!

T∑
t=1

E [1[yt 6= ŷt ]]− `(〈U ,xt〉, yt) ≤
‖U‖2

2η

+

 T∑
t=1

E [1[yt 6= ŷt ]] + η

2‖∇Wt `(〈Wt ,xt〉, yt)‖2︸ ︷︷ ︸
Smaller than surrogate loss!

− `(〈Wt ,xt〉, yt)


≤ KX 2‖U‖2

Bandit before: O(K
√
dT ln(T )) regret with O((dK )2) runtime

Bandit now: O(K
√
T ) regret with O(dK ) runtime (very cool in

high-dimensional applications)

Dirk van der Hoeven (Leiden University) Exploiting the Surrogate Gap 17 / 30



A closer look at Gaptron

Input: Learning rate η > 0, exploration rate γ ∈ [0, 1], and gap map
a : RK×d × Rd → [0, 1]

1: Initialize W1 = 0
2: for t = 1 . . .T do
3: Obtain xt
4: Let y?t = arg maxk〈W k

t ,xt〉
5: Set p′t = (1−max{a(Wt ,xt), γ})ey?

t + max{a(Wt ,xt), γ} 1
K 1

6: Predict with label ŷt ∼ p′t
7: Obtain 1[ŷt 6= yt ] and set gt = ∇`t(Wt)
8: Update Wt+1 = arg minW∈W η〈gt ,W 〉+ 1

2‖W −Wt‖2
9: end for
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A closer look at Gaptrons predictions

p′t = (1−max{a(Wt ,xt), γ})ey?
t︸ ︷︷ ︸

I think the outcome is y?
t

+ max{a(Wt ,xt), γ}
1
K 1︸ ︷︷ ︸

But I am not certain

Choosing the right a ensures that the expected loss of Gaptron plus the
norm of the gradient is smaller than the surrogate loss.
If a(W ,x) = 0 we recover standard algorithms such as the Perceptron.
If γ > 0 we sample any outcome with probability at least γ 1

K , which is
important for the bandit setting
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Main Lemma of the paper

Lemma

For any U ∈ W Gaptron satisfies

E

[ T∑
t=1

1[ŷt 6= yt ]−
T∑

t=1
`t(U)

]

≤ ‖U‖
2

2η + γ
K − 1
K T

+
T∑

t=1
E
[
(1− at)1[y?t 6= yt ] + at

K − 1
K − `t(Wt) + η

2‖gt‖2
]

︸ ︷︷ ︸
surrogate gap

.

Rest of the paper: finding the correct a, η, and γ to bound the surrogate
gap by 0
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Choosing at and η for smooth losses in 2 dimensions

In 2 dimensions yt ∈ {−1,+1} and `t(W ) = `(〈W ,xt〉yt).

A function f is
H-smooth if

f (x + z) ≤ f (x) + 〈∇f (x), z〉+ H
2 ‖z‖

2
2.

Let U?
t = arg minW `t(W ). For smooth surrogate losses we have

‖∇`t(Wt)‖22 ≤ H(`t(Wt)− `t(U?
t )) = H`t(Wt)
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Choosing at and η for smooth losses

For smooth surrogate losses we have:

(1− at)1[y?t 6= yt ] + at
K − 1
K − `t(Wt) + η

2‖gt‖2

≤ (1− at)1[y?t 6= yt ] + at
K − 1
K − `t(Wt) + ηH

2 `t(Wt).

Picking at = `?t (Wt) = `(〈Wt ,xt〉y?t ) and η = 2
HK we have

(1− at)1[y?t 6= yt ] + at
K − 1
K − `t(Wt) + η

2‖gt‖2

≤ (1− `?t (Wt))1[y?t 6= yt ] + `?t (Wt)
K − 1
K − K − 1

K `t(Wt).
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Choosing at and η for smooth losses

If y?t = yt :

(1− at)1[y?t 6= yt ] + at
K − 1
K − `t(Wt) + η

2‖gt‖2

≤ (1− `?t (Wt))1[y?t 6= yt ] + `?t (Wt)
K − 1
K − K − 1

K `t(Wt)

= `t(Wt)
K − 1
K − K − 1

K `t(Wt)

= 0
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Choosing at and η for smooth losses

If y?t 6= yt :

(1− at)1[y?t 6= yt ] + at
K − 1
K − `t(Wt) + η

2‖gt‖2

≤ (1− `?t (Wt))1[y?t 6= yt ] + `?t (Wt)
K − 1
K − K − 1

K `t(Wt)

= 1− 1
K `

?
t (Wt)−

K − 1
K `t(Wt)

= 1− 1
K `(〈Wt ,xt〉y?t )− K − 1

K `(〈Wt ,xt〉yt)

≤ 1− `(〈Wt ,xt〉(
1
K y?t + K − 1

K yt︸ ︷︷ ︸
opposite sign of 〈Wt ,xt〉

))

≤ 0
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Inspiration from classification with abstention

Setting:
1 the learner observes the predictions y i

t ∈ [−1, 1] of experts i = 1, . . . , d
2 based on the experts’ predictions the learner predicts y ′t ∈ [−1, 1] ∪ ∗,
where ∗ stands for abstaining

3 the environment reveals yt ∈ {−1, 1}
4 the learner suffers loss `t(y ′t) = 1

2(1− yty ′t) if y ′t ∈ [−1, 1] and ct
otherwise.
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Inspiration from classification with abstention

Algorithm:
Input: AdaHedge

1: for t = 1 . . .T do
2: Obtain expert predictions yt = (y1

t , . . . , yd
t )> ∈ [−1, 1]d

3: Obtain expert distribution p̂t from AdaHedge
4: Set ŷt = 〈p̂t ,yt〉
5: Let y?t = sign(ŷt)
6: Set bt = 1− |ŷt |
7: Predict y′t = y?t with probability 1− bt and predict y ′t = ∗ with

probability bt
8: Obtain `t and send `t to AdaHedge
9: end for
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Inspiration from classification with abstention

Lemma

For any expert i , the expected loss of satisfies:

T∑
t=1

(1− bt)`t(y?t ) + btct

≤
T∑

t=1
`t(y i

t ) + inf
η>0

 ln(d)
η

+
T∑

t=1
(1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt)︸ ︷︷ ︸

Abstention gap


+ 4

3 ln(d) + 2,

where vt = Ei∼p̂t [(`t(ŷt)− `t(y i
t ))2].
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Inspiration from classification with abstention

Abstention gap

(1− bt)`t(y?t ) + btct + ηvt − `t(ŷt)

Surrogate gap:

(1− at)1[y?t 6= yt ] + atc ′t + η

2‖gt‖2 − `t(Wt)

c ′t is the cost for guessing rather than abstaining, although if abstaining
costs strictly less than 1 we could replace c ′t with abstention cost ct and
obtain surrogate regret that satisfies

RT (U) = O
(
‖X‖22‖U‖22
1−maxt ct

)
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Future work

High probability bounds
Can we exploit curvature to improve regret bound?
Empirical performance?
Can we improve regret when the model can predict perfectly (both
bandit and full information)?

I For full information, I think yes.
I For bandit setting, I am not sure.

Can we apply this idea in other problems such as ranking?
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Where to find the paper?

my website: dirkvanderhoeven.com/research

arxiv: https://arxiv.org/abs/2007.12618

NeurIPS 2020 proceedings
By googling "gaptron" (the twitter and instagram accounts are not
mine).

Dirk van der Hoeven (Leiden University) Exploiting the Surrogate Gap 30 / 30

dirkvanderhoeven.com/research
https://arxiv.org/abs/2007.12618

