
Comparator-Adaptive Convex Bandits

Dirk van der Hoeven
Mathematical Institute

Leiden University
dirk@dirkvanderhoeven.com

Ashok Cutkosky
Boston University

ashok@cutkosky.com

Haipeng Luo
Computer Science Department

University of Southern California
haipengl@usc.edu

Abstract

We study bandit convex optimization methods that adapt to the norm of the com-
parator, a topic that has only been studied before for its full-information counterpart.
Specifically, we develop convex bandit algorithms with regret bounds that are small
whenever the norm of the comparator is small. We first use techniques from the
full-information setting to develop comparator-adaptive algorithms for linear ban-
dits. Then, we extend the ideas to convex bandits with Lipschitz or smooth loss
functions, using a new variant of the standard single-point gradient estimator and
carefully designed surrogate losses.

1 Introduction

In many situations, information is readily available. For example, if a gambler were to bet on the
outcome of a football game, he can observe the outcome of the game regardless of what bet he made.
In other situations, information is scarce. For example, the gambler could be deciding what to eat for
dinner: should I eat a salad, a pizza, a sandwich, or not at all? These actions will result in different
and unknown outcomes, but the gambler will only see the outcome of the action he actually takes,
with one notable exception: not eating results in a predetermined outcome of being very hungry.

These two situations are instantiations of two different settings in online convex optimization: the full
information setting and the bandit setting. More formally, both settings are sequential decision making
problems where in each round t = 1, . . . , T , a learner has to make a prediction wt ∈ W ⊆ Rd and
an adversary provides a convex loss function `t :W → R. Afterwards, in the full information setting
[27] the learner has access to the loss function `t, while in the bandit setting [19, 13] the learner only
receives the loss evaluated at the prediction, that is, `t(wt). In both settings the goal is to minimize
the regret with respect to some benchmark point u in hindsight, referred to as the comparator. More
specifically, the regret against u is the difference between the total loss incurred by the predictions of
the learner and that of the comparator:

RT (u) =

T∑
t=1

`t(wt)− `t(u).

When the learner’s strategy is randomized, we measure the performance by the expected regret
E [RT (u)].

Standard algorithms in both the full information setting and the bandit setting assume that the learner’s
decision spaceW is a convex compact set and achieve sublinear regret against the optimal comparator
in this set: u = arg minu∗∈W

∑T
t=1 `t(u

∗). To tune these standard algorithms optimally, however,
one requires knowledge of the norm of the comparator ‖u‖, which is unknown. A common work-
around is to simply tune the algorithms in terms of the worst-case norm: maxu∈W ‖u‖, assumed
to be 1 without loss of generality. This results in worst-case bounds that do not take advantage of
the case when ‖u‖ is small. For example, when the loss functions are L-Lipschitz, classic Online

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Table 1: Summary of main results. Regret is measured with respect to the total loss of an arbitrary
point u ∈ Rd in the unconstrained setting, or an arbitrary point u ∈ W in the constrained setting
with a decision spaceW contained in the unit ball. T is the total number of rounds, 1/c is radius of
the largest ball contained byW , and ν is the self-concordant parameter. Both c and ν are bounded by
O(d).

Loss functions (L-Lipschitz) Regret for unconstrained settings Regret for constrained settings

Linear (Section 3.2) Õ
(
‖u‖dL

√
T
)

Õ
(
‖u‖cdL

√
T
)

Convex (Section 4.1 and 4.2) Õ
(
‖u‖L

√
dT

3
4

)
Õ
(
‖u‖cL

√
dT

3
4

)
Convex and β-smooth (Section 4.2) Õ

(
max{‖u‖2, ‖u‖}β(dLT)

2
3

)
-

Gradient Descent [27] guarantees RT (u) = O(L
√
T) in the full information setting, while the

algorithm of [13] guarantees E [RT (u)] = O(d
√
LT 3/4) in the bandit setting, both of which are

independent of ‖u‖.
Recently, there has been a series of works in the full information setting that addresses this problem by
developing comparator-adaptive algorithms, whose regret against u depends on ‖u‖ for all u ∈ W
simultaneously (see for example McMahan and Orabona [22], Orabona and Pál [23], Foster et al.
[14], Cutkosky and Boahen [9], Kotlowski [20], Cutkosky and Orabona [10], Foster et al. [16], Jun
and Orabona [18], Van der Hoeven [25]). These bounds are often not worse than the standard
worst-case bounds, but could be much smaller in the case when there exists a comparator with small
norm and reasonably small total loss. Moreover, most of these results also hold for the so-called
unconstrained setting whereW = Rd, that is, both the learner’s predictions and the comparator can
be any point in Rd. For example, Cutkosky and Orabona [10] achieveRT (u) = Õ(‖u‖L

√
T) for

all u, in both the constrained and unconstrained settings, under full information feedback.1

While developing comparator-adaptive algorithms is relatively well-understood at this point in the
full information setting, to the best of our knowledge, this has not been studied at all for the more
challenging bandit setting. In this work, we make the first attempt in this direction and develop
comparator-adaptive algorithms for several situations, including learning with linear losses, general
convex losses, and convex and smooth losses, for both the constrained and unconstrained settings.
Our results are summarized in Table 1. Ignoring other parameters for simplicity, for the linear case,
we achieve Õ(‖u‖

√
T) regret (Section 3.2); for the general convex case, we achieve Õ(‖u‖T 3

4)
regret in both the constrained and unconstrained setting (Sections 4.1 and 4.2); and for the convex
and smooth case, we achieve Õ

(
max{‖u‖2, ‖u‖}β(dLT)

2
3

)
regret in the unconstrained setting

(Section 4.1).

In order to achieve our results for the convex case, we require an assumption on the loss, namely
that the value of `t(0) is known for all t.2 While restrictive at first sight, we believe that there are
abundant applications where this assumption holds. As one instance, in control or reinforcement
learning problems, 0 may represent some nominal action which has a known outcome: not eating
results in hunger, or buying zero inventory will result in zero revenue. Another application is a
classification problem where the features are not revealed to the learner. For example, end-users
of a prediction service may not feel comfortable revealing their information to the service. Instead,
they may be willing to do some local computation and report the loss of the service’s model. Most
classification models (e.g. logistic regression) have the property that the loss of the 0 parameter
is a known constant regardless of the data, and so this situation would also fit into our framework.
Common loss functions that satisfy this assumption are linear loss, logistic loss, and hinge loss.

Techniques Our algorithms are based on sophisticated extensions of the black-box reduction
introduced by Cutkosky and Orabona [10], which separately learns the magnitude and the direction
of the prediction. To make the reduction work in the bandit setting, however, new ideas are required,
including designing an appropriate surrogate loss function and a new variant of the standard one-point
gradient estimator with time-varying parameters. Note that Cutkosky and Orabona [10] also propose

1Throughout the paper, the notation Õ hides logarithmic dependence on parameters T , ‖u‖, and L.
2For the linear case, this clearly holds since `t(0) = 0.

2

a method to convert any unconstrained algorithm to a constrained one in the full information setting,
but this does not work in the bandit setting for technical reasons. Instead, we take a different approach
by constraining the magnitude of the prediction directly.

Related work As mentioned, there has been a line of recent work on comparator-adaptive algo-
rithms for the full information setting. Most of them do not transfer to the bandit setting, except
for the approach of Cutkosky and Orabona [10] from which we draw heavy inspiration. To the best
of our knowledge, comparator-adaptive bandit algorithms have not been studied before. Achieving
“adaptivity” in a broader sense is generally hard for problems with bandit feedback; see negative
results such as [12, 21] as well as recent progress such as [7, 15].

In terms of worst-case (non-adaptive) regret, the seminal work of [1] is the first to achieve O(
√
T)

regret for bandit with linear losses, and [19, 13] are the first to achieve sublinear regret for general
convex case. Over the past decade, the latter result has been improved in many different ways [2,
24, 3, 17], and regret of order O(

√
T) under no extra assumptions was recently achieved [4, 5, 6].

However, these O(
√
T) bounds are achieved by very complicated algorithms that incur a huge

dependence on the dimension d. Our algorithms are more aligned with the simpler ones with milder
dimension-dependence [1, 13, 24] and achieve the same dependence on T in different cases. How
to achieve comparator-adaptive regret of order O(

√
T) for the general convex case is an important

future direction.

2 Preliminaries

In this section, we describe our notation, state the definitions we use, and introduce the bandit
convex optimization setting formally. We also describe the black-box reduction of [10] we will use
throughout the paper.

Notation and definitions The inner product between vectors g ∈ Rd and w ∈ Rd is denoted by
〈w, g〉. R+ denotes the set of positive numbers. The Fenchel conjugate F ? of a convex function F
is defined as F ?(w) = supg〈w, g〉 − F (g). ‖ · ‖ denotes a norm and ‖g‖? = supw:‖w‖≤1〈w, g〉
denotes the dual norm of g. The Bregman divergence associated with convex function F between
points x and y is denoted byBF (x‖y) = F (x)−F (y)−〈∇F (y),x−y〉, where∇F (x) denotes the
gradient of F evaluated at x. The unit ball equipped with norm ‖·‖ is denoted byB = {w : ‖w‖ ≤ 1}.
The unit sphere with norm ‖ · ‖ is denoted by S = {w : ‖w‖ = 1}. The unit ball and sphere with
norm ‖ · ‖2 are denoted by B and S respectively. x ∼ U(Z) denotes that x follows the uniform
distribution over Z . We say a function f is β-smooth over the setW if the following holds:

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
β

2
‖x− y‖22, ∀x,y ∈ W.

We say a function f is L-Lipschitz over the setW if the following holds:

|f(y)− f(x)| ≤ L‖y − x‖2, ∀x,y ∈ W.

Throughout the paper we will assume that β, L ≥ 1. Also, by mild abuse of notation, we use ∂f(x)
to indicate an arbitrary subgradient of a convex function f at x.

All of our algorithms are reductions that use prior algorithms in disparate ways to obtain our new
results. In order for these reductions to work, we need some assumptions on the base algorithms.
We will encapsulate these assumptions in interfaces that describe inputs, outputs, and guarantees
described by an algorithm rather than its actual operation (see Interfaces 3 and 4 for examples). We
can use specific algorithms from the literature to implement these interfaces, but our results depend
only on the properties described in the interfaces.

2.1 Bandit Convex Optimization

The bandit convex optimization protocol proceeds in rounds t = 1, . . . , T . In each round t the learner
plays wt ∈ W ⊆ Rd. Simultaneously, the environment picks an L-Lipschitz convex loss function
`t :W → R, after which the learner observes `t(wt). Importantly, the learner only observes the loss
function evaluated at wt, not the function itself. This forces the learner to play random points and

3

Algorithm 1 Black-Box Reduction with Full Information
1: Input: “Direction” algorithm AZ and “scaling” algorithm AV
2: for t = 1 . . . T do
3: Get zt ∈ Z from AZ
4: Get vt ∈ R from algorithm AV
5: Play wt = vtzt, receive gt
6: Send gt to algorithm AZ as the t-th loss vector
7: Send 〈zt, gt〉 to algorithm AV as the t-th loss value
8: end for

estimate the feedback he wants to use to update wt. Therefore, in the bandit feedback setting, the
goal is to bound the expected regret E [RT (u)], where the expectation is with respect to both the
learner and the environment.

We make a distinction between linear bandits, where `t(w) = 〈w, gt〉, and convex bandits, where
`t can be any L-Lipschitz convex function. Throughout the paper, ifW 6= Rd we assume thatW
is compact, has a non-empty interior, and contains 0. Without loss of generality we assume that
1
cB ⊆ W ⊆ B for some c ≥ 1. Some of our bounds depend on c, which, without loss of generality, is
always bounded by d, due to a reshaping trick discussed in [13].

2.2 Black-Box Reductions with Full Information

Our algorithms are based on a black-box reduction from [10] for the full information setting (see
Algorithm 1). The reduction works as follows. In each round t the algorithms plays wt = vtzt, where
zt ∈ Z for some domain Z , is the prediction of a constrained algorithm AZ , and vt is the prediction
of a one-dimensional algorithm AV . The goal of AZ is to learn the direction of the comparator while
the goal of AV is to learn the norm of the comparator. Let gt be the gradient of `t at wt, which is
known to the algorithm in the full information setting. We feed gt as feedback to AZ and 〈zt, gt〉 as
feedback to AV . Although the original presentation considers only Z = B, we will need to extend
the analysis to more general domains.

As outlined by Cutkosky and Orabona [10], the regret of Algorithm 1 decomposes into two parts. The
first part of the regret is for learning the norm of u, and is controlled by Algorithm AV . The second
part of the regret is for learning the direction of u and is controlled by AZ . The proof is provided in
Appendix A for completeness.

Lemma 1. Let RVT (‖u‖) =
∑T
t=1(vt − ‖u‖)〈zt, gt〉 be the regret for learning ‖u‖ by Algorithm

AV and letRZT
(

u
‖u‖

)
=
∑T
t=1〈zt−

u
‖u‖ , gt〉 be the regret for learning u

‖u‖ byAZ . Then Algorithm
1 satisfies

RT (u) = RVT (‖u‖) + ‖u‖RZT
(

u

‖u‖

)
. (1)

Cutkosky and Orabona [10] provide an algorithm to ensureRVT (‖u‖) = Õ
(

1 + ‖u‖L
√
T
)

, given
that ‖gt‖? ≤ L. This algorithm satisfies the requirements described later in Interface 3, and will be
used throughout this paper.

3 Comparator-Adaptive Linear Bandits

Now, we apply the reduction of section 2.2 to develop comparator-adaptive algorithms for linear
bandits. We will see that in the unconstrained case, the reduction works almost without modification,
but in the constrained case we will need to be more careful to enforce the constraints.

3.1 Unconstrained Linear Bandits

We begin by discussing the unconstrained linear bandit setting, which turns out to be the easiest
setting we consider. Following Algorithm 1, we will still play wt = vtzt. However, instead of
taking a fixed zt from a full-information algorithm, we take a random zt from a bandit algorithm.

4

Algorithm 2 Black-Box Reduction for Linear Bandits
1: Input: Constrained Linear Bandit Algorithm AZ and unconstrained 1-d Algorithm AV
2: for t = 1 . . . T do
3: Get zt ∈ Z from AZ
4: Get vt ∈ R from AV
5: Play wt = vtzt
6: Receive loss 〈wt, gt〉
7: Compute Lt = 1

vt
〈wt, gt〉 = 〈zt, gt〉.

8: Send Lt to Algorithm AZ as t-th loss value.
9: Send Lt to Algorithm AV as t-th loss value.

10: end for

Interface 3 Scale Learning Interface (see example implementation in [10])
1: Input: A line segment l ⊆ R
2: for t = 1 . . . T do
3: Play vt ∈ l
4: Receive loss value gt such that |gt| ≤ LV
5: end for
6: Ensure: for all v̂ ∈ l,

∑T
t=1(vt − v̂)gt = Õ

(
1 + |v̂|LV

√
T
)

Importantly, we can recover 〈zt, gt〉 exactly since 〈wt, gt〉 1vt = 〈zt, gt〉. This means that we have
enough information to send appropriate feedback to both AV and AZ and apply the argument of
Lemma 1. Interestingly, we use a full-information one-dimensional algorithm for AV , and only need
AZ to take bandit input. This is because AV gets full information in the form of 〈zt, gt〉.
The algorithm AZ for learning the direction, on the other hand, now must be a bandit algorithm
because intuitively we do not immediately get the full direction information gt from the value of the
loss alone. We will need this algorithm to fulfil the requirements described by Interface 4. One such
algorithm is given by continuous Exponential Weights on a constrained set (see Van der Hoeven et al.
[26, section 6] for details).

Our unconstrained linear bandit algorithm then is constructed from Algorithm 2 by choosing an
algorithm that implements Interface 4 as AZ and Interface 3 with l = R as AV . Plugging in the
guarantees of the individual algorithms and taking the expectation of (1), the total expected regret is
Õ(1 + ‖u‖dL

√
T). Compared to the full information setting we have gained a factor d in the regret

bound, which is unavoidable given the bandit feedback [11]. The formal result is below.

Theorem 1. SupposeAZ implements Interface 4 with domainZ = B andAV implements Interface 3
with l = R+. Then Algorithm 2 satisfies for all u ∈ Rd:

E[R(u)] = Õ(1 + ‖u‖dL
√
T).

3.2 Constrained Linear Bandits

The algorithm in the previous section only works forW = Rd. In this section, we consider a compact
setW ⊂ Rd.

In the full-information setting, Cutkosky and Orabona [10] provide a projection technique for
producing constrained algorithms from unconstrained ones. Unfortunately, this technique does not
translate directly to the bandit setting, and we must be more careful in designing our constrained
linear bandit algorithm. The key idea is to constrain the internal scaling algorithm AV , rather than
attempting to constrain the final predictions wt. Enforcing constraints on the scaling algorithm’s
outputs vt will naturally translate into a constraint on the final predictions wt.

To produce a constrained linear bandit algorithm, we again use Algorithm 2, but now we instantiate
AV implementing Interface 3 with l = [0, 1] rather than l = R+, and instantiate AZ implementing
Interface 4 with Z =W rather than Z = B. As in the unconstrained setting, this allows us to feed
full information feedback to AV . At the same time restricting Interface 3 to l = [0, 1] also guarantees

5

Interface 4 Direction Learning Interface for Linear Bandits (see example implementation in [26])
1: Input: Domain Z
2: for t = 1 . . . T do
3: Play zt ∈ Z
4: Receive loss value 〈zt, gt〉 such that |〈zt, gt〉| ≤ L
5: end for
6: Ensure: for all u ∈ Z , E

[∑T
t=1〈zt − u, gt〉

]
= Õ

(
dL
√
T
)

that wt ∈ W . The regret bound of this algorithm is given in Theorem 2. The proof follows from
combining Lemma 1 with the guarantees of Interfaces 3 and 4 and can be found in Appendix B.
Theorem 2. Suppose AZ implements 4 with domain Z =W and AV implements Interface 3 with
l = [0, 1]. Then Algorithm 2 satisfies for all u ∈ W ,

E[RT (u)] = Õ
(

1 + ‖u‖cdL
√
T
)
.

IfW is a unit ball, then c = 1. For other shapes ofW , recall that c is at most d, which leads to a
regret bound of O

(
1 + ‖u‖d2L

√
T
)

.

4 Comparator-Adaptive Convex Bandits

In the general convex bandit problem, it is not clear how to use the single evaluation point feedback
`t(wt) to derive any useful information about `t. Fortunately, Flaxman et al. [13] solved this problem
by using randomness to extract the gradients of a smoothed version of `t. To adapt to the norm of the
comparator, we employ the following tweaked version of smoothing used by Flaxman et al. [13]:

`vt (w) = Eb∼U(B)[`t(w + vδb)], (2)

where v, δ > 0. In contrast to prior work using this framework, our smoothing now depends on the
scaling parameter v. Lemma 2 gives the gradient of `vt (w) and is a straightforward adaptation of
Lemma 2.1 by Flaxman et al. [13].
Lemma 2. For δ ∈ (0, 1], v > 0:

∇`vt (w) =
d

vδ
Es∼U(S)[`t(w + vδs)s]. (3)

With this lemma, we can estimate the gradient of the smoothed version of `t by evaluating `t at a
random point, essentially converting the convex problem to a linear problem, except that one also
needs to control the bias introduced by smoothing. Note that this estimate scales with 1

v , which can be
problematic if v is small. To deal with this issue, we require one extra assumption: the value of `t(0)
is known to the learner. As discussed in section 1, this assumption holds for several applications,
including some control or reinforcement learning problems, where 0 represents a nominal action
with a known outcome. Furthermore, certain loss functions satisfy the second assumption by default,
such as linear loss, logistic loss, and hinge loss. Without loss of generality we assume that `t(0) = 0,
as we can always shift `t without changing the regret.

Our general algorithm template is provided in Algorithm 5. It incorporates the ideas of Algorithm 2,
but adds new smoothing and regularization elements in order to deal with the present more general
situation. More specifically, it again makes use of subroutine AV , which learns the scaling. The
direction is learned by Online Gradient Descent [27], as was also done by Flaxman et al. [13]. Given
zt and vt, our algorithm plays the point wt = vt(zt + δst) for some parameter δ and st drawn
uniformly at random from S. By equation (3), we have

E
[
d

vtδ
`t(wt)st

]
= ∇`vtt (vtzt). (4)

This means that we can use ĝt = d
vtδ
`t(wt)st as an approximate gradient estimate, and we send this

ĝt to Online Gradient Descent as the feedback. In other words, Online Gradient Descent itself is

6

Algorithm 5 Black-Box Comparator-Adaptive Convex Bandit Algorithm
1: Input: Scaling algorithm AV , δ ∈ (0, 1], α ∈ [0, 1], domain Z ⊆ B, and learning rate η
2: Set z1 = 0
3: for t = 1 . . . T do
4: Get vt from AV
5: Sample st ∼ U(S)
6: Set wt = vt(zt + δst)
7: Play wt

8: Receive `t(wt)
9: Set ĝt = d

vtδ
`t(wt)st

10: if `t is β-smooth then
11: Set ¯̀

t(v) = v〈zt, ĝt〉+ βδ2v2

12: else
13: Set ¯̀

t(v) = v〈zt, ĝt〉+ 2δL|v|
14: end if
15: Send ∂ ¯̀

t(vt) to algorithm AV as the t-th loss value
16: Update zt+1 = arg minz∈(1−α)Z η〈z, ĝt〉+ ‖zt − z‖22
17: end for

essentially dealing with a full-information problem with gradient feedback and is required to ensure a
regret bound E[

∑T
t=1〈zt − u, ĝt〉] = Õ(dLδ

√
T) for all u in some domain Z . For technical reasons,

we will also need to enforce zt ∈ (1− α)Z for some α ∈ [0, 1]. This restriction will be necessary in
the constrained setting to ensure vt(zt + δst) ∈ W .

Next, to specify the feedback to the scaling learning black-boxAV , we define a surrogate loss function
¯̀
t(v) which contains a linear term v〈zt, ĝt〉 and also a regularization term (see Algorithm 5 for the

exact definition). The feedback to AV is then ∂ ¯̀
t(vt). Therefore, AV is essentially learning these

surrogate losses, also with full gradient information. The regularization term is added to deal with the
bias introduced by smoothing. This term does not appear in prior work on convex bandits, and it is
one of the key components needed to ensure that the final regret is in terms of the unknown ‖u‖.
Algorithm 5 should be seen as the analogue of the black-box reduction of Algorithm 1, but for bandit
feedback instead of full information. The expected regret guarantee of Algorithm 5 is shown below,
and the proof can be found in appendix C.
Lemma 3. Suppose AV implements Interface 3 with l ⊆ R+, wt ∈ W for all t, and let LV =

maxt ∂ ¯̀
t(vt). Suppose that `t(0) = 0. Then Algorithm 5 with δ, α ∈ (0, 1] and η =

√
δ2

4(dL)2T

satisfies for all ‖u‖ ∈ l and r > 0 with ur
‖u‖ ∈ Z ,

E [RT (u)] = Õ

(
1 + TδL

‖u‖
r

+
‖u‖
r
LV
√
T +

‖u‖dL
rδ

√
T + α‖u‖2TL

)
.

In addition, if `t is also β-smooth for all t, then we have

E [RT (u)] = Õ

(
1 + Tβδ2

(
‖u‖
r

)2

+
‖u‖
r
LV
√
T +

‖u‖
r

dL

δ

√
T + α‖u‖2TL

)
.

This bound has two main points not obviously under our direct control: the assumption that the wt

lie inW , and the value of LV , which is a bound on |∂ ¯̀
t(vt)|. In the remainder of this section we

will specify the various settings of Algorithm 5 that guarantee that wt ∈ W and that LV is suitably
bounded: two settings for the unconstrained setting and one for the constrained setting. The α‖u‖TL
term is due to zt ∈ (1− α)Z rather than zt ∈ Z , which induces a small amount of bias. The r in
Lemma 3 is to ensure that we satisfy the requirements for Online Gradient Descent to have a suitable
regret bound. For unconstrained convex bandits r = 1. For constrained convex bandits we will see
that 1

r = c (recall that we assume that 1
cB ⊆ W ⊆ B).

4.1 Unconstrained Convex Bandits

In this section we instantiate Algorithm 5 and derive regret bounds for either general convex losses or
convex and smooth losses. We start with general convex losses. SinceW = Rd, we do not need to

7

ensure that zt + δst ∈ W and we can safely set α = 0. This choice guarantees that zt + δst ∈ 2B
and that |∂ ¯̀

t(vt)| ≤ 2dL
δ + 2δL. Then, Lemma 3 directly leads to Theorem 3 (the proof is deferred

to appendix C.1).
Theorem 3. Supppose AV implements Interface 3 with l = R+ and that `t(0) = 0. Then Algorithm

5 with δ = min{1,
√
dT−

1
4 }, Z = B, α = 0, and η =

√
δ2

4(dL)2T satisfies for all u ∈ Rd,

E [RT (u)] = Õ
(

1 + ‖u‖Ld
√
T + ‖u‖L

√
dT

3
4

)
.

For unconstrained smooth bandits, we face an extra challenge. To bound the regret of Algorithm 5,
|∂ ¯̀

t(vt)| = |〈zt, ĝt〉+ β2δ2vt| must be bounded. Now in contrast to the linear or Lipschitz cases,
in the smooth case ¯̀

t(vt) is not Lipschitz over R+. We will address this by artificially constraining
vt. Specifically, we ensure that vt ≤ 1

δ3 , which implies |δ2vt| = O
(
1
δ

)
. This makes the Lipschitz

constant of ¯̀
t to be dominated by the gradient estimate ĝt rather than the regularization. To see

how this affects the regret bound, consider two cases, ‖u‖2 ≤ 1
δ3 and ‖u‖2 > 1

δ3 . If ‖u‖2 ≤ 1
δ3

then we have not hurt anything by constraining vt since ‖u‖2 satisfies the same constraint. If
instead ‖u‖2 > 1

δ3 then the consequences for the regret bound are not immediately clear. However,
following a similar technique in [8], we use the fact that the regret against 0 is O(1) and the Lipschitz
assumption to show that we have added a penalty of only O(‖u‖2LT):

E[RT (u)] = E[RT (0)] +

T∑
t=1

E[`t(0)− `t(u)] = O(1 + ‖u‖2LT).

Since ‖u‖2 > 1
δ3 the penalty for constraining vt is O(‖u‖2LT) = O(‖u‖22Lδ3T), which is

O(‖u‖22L
√
T) if we set δ = O(T−1/6). The formal result can be found below and its proof can be

found in appendix C.1.
Theorem 4. Suppose AV implements Interface 3 with l = (0, 1

δ3], that `t is β-smooth for all t,
and that `t(0) = 0. Then Algorithm 5 with δ = min{1, (dL)1/3T−1/6}, Z = B, α = 0, and

η =
√

δ2

4(dL)2T satisfies for all u ∈ Rd,

E [RT (u)] = Õ
(

1 + max{‖u‖2, ‖u‖}β(dLT)
2
3 + max{‖u‖22, ‖u‖}dL2β

√
T
)
.

4.2 Constrained convex bandits

For the constrained setting we will set Z =W and α = δ. This ensures that vt(zt + δst) ∈ W and
we can apply Lemma 3 to find the regret bound in Theorem 5 below. Compared to the unconstrained
setting, the regret bound now scales with c, which is due to the reshaping trick discussed in [13].
Theorem 5. SupposeAV implements Interface 3 with l = (0, 1] and that `t(0) = 0. Then Algorithm

5 with δ = min{1,
√
dT−1/4}, Z =W , α = δ = min{1,

√
dT−1/4}, and η =

√
δ2

4(dL)2T satisfies
for all u ∈ W ,

E [RT (u)] = Õ
(

1 + (‖u‖2 + c‖u‖)
√
dT 3/4 + c‖u‖dL

√
T
)
.

5 Conclusion

In this paper, we develop the first algorithms that have comparator-adaptive regret bounds for various
bandit convex optimization problems. The regret bounds of our algorithms scale with ‖u‖, which
may yield smaller regret in favourable settings.

For future research, there are a number of interesting open questions. First, our current results do
not encompass improved rates for smooth losses on constrained domains. At first blush, one might
feel this is relatively straightforward via methods based on self-concordance [24], but it turns out
that while such techniques provide good direction-learning algorithms, they may cause the gradients
provided to the scaling algorithm to blow-up. Secondly, there is an important class of loss functions
for which we did not obtain norm adaptive regret bounds: smooth and strongly convex losses. It
is known that in this case an expected regret bound of O(d

√
T) can be efficiently achieved [17].

However, to achieve this regret bound the algorithm of Hazan and Levy [17] uses a clever exploration
scheme, which unfortunately leads to sub-optimal regret bounds for our algorithms.

8

Broader Impact

Our contribution is primarily theoretical, and we do not foresee any negative ethical or society impact.

Acknowledgments and Disclosure of Funding

Dirk van der Hoeven was supported by the Netherlands Organization for Scientific Research (NWO
grant TOP2EW.15.211). Haipeng Luo was supported by NSF Awards IIS-1755781 and IIS-1943607.
Ashok Cutkosky was employed at Google Research while working on this project.

References
[1] Abernethy, J., Hazan, E., and Rakhlin, A. (2008). Competing in the dark: An efficient algorithm

for bandit linear optimization. In Conference on Learning Theory (COLT), pages 263–274.

[2] Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex optimization
with multi-point bandit feedback. In Conference on Learning Theory (COLT), pages 28–40.
Citeseer.

[3] Agarwal, A., Foster, D. P., Hsu, D. J., Kakade, S. M., and Rakhlin, A. (2011). Stochastic convex
optimization with bandit feedback. In Advances in Neural Information Processing Systems, pages
1035–1043.

[4] Bubeck, S., Dekel, O., Koren, T., and Peres, Y. (2015). Bandit convex optimization:
√
T regret in

one dimension. In Conference on Learning Theory (COLT), pages 266–278.

[5] Bubeck, S. and Eldan, R. (2016). Multi-scale exploration of convex functions and bandit convex
optimization. In Conference on Learning Theory (COLT), pages 583–589.

[6] Bubeck, S., Lee, Y. T., and Eldan, R. (2017). Kernel-based methods for bandit convex optimiza-
tion. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
72–85. ACM.

[7] Chen, Y., Lee, C.-W., Luo, H., and Wei, C.-Y. (2019). A new algorithm for non-stationary
contextual bandits: Efficient, optimal, and parameter-free. In Conference On Learning Theory
(COLT), pages 696–726.

[8] Cutkosky, A. (2019). Artificial constraints and hints for unbounded online learning. In Conference
on Learning Theory (COLT), pages 874–894.

[9] Cutkosky, A. and Boahen, K. (2017). Online learning without prior information. In Conference
on Learning Theory (COLT), pages 643–677.

[10] Cutkosky, A. and Orabona, F. (2018). Black-box reductions for parameter-free online learning
in banach spaces. In Conference on Learning Theory (COLT), pages 1493–1529.

[11] Dani, V., Kakade, S. M., and Hayes, T. P. (2008). The price of bandit information for online
optimization. In Advances in Neural Information Processing Systems, pages 345–352.

[12] Daniely, A., Gonen, A., and Shalev-Shwartz, S. (2015). Strongly adaptive online learning. In
International Conference on Machine Learning, pages 1405–1411.

[13] Flaxman, A. D., Kalai, A. T., Kalai, A. T., and McMahan, H. B. (2005). Online convex
optimization in the bandit setting: gradient descent without a gradient. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society for
Industrial and Applied Mathematics.

[14] Foster, D. J., Kale, S., Mohri, M., and Sridharan, K. (2017). Parameter-free online learning via
model selection. In Advances in Neural Information Processing Systems, pages 6020–6030.

[15] Foster, D. J., Krishnamurthy, A., and Luo, H. (2019). Model selection for contextual bandits. In
Advances in Neural Information Processing Systems, pages 14714–14725.

9

[16] Foster, D. J., Rakhlin, A., and Sridharan, K. (2018). Online learning: Sufficient statistics and
the burkholder method. In Conference on Learning Theory (COLT), pages 3028–3064.

[17] Hazan, E. and Levy, K. (2014). Bandit convex optimization: Towards tight bounds. In Advances
in Neural Information Processing Systems, pages 784–792.

[18] Jun, K.-S. and Orabona, F. (2019). Parameter-free online convex optimization with sub-
exponential noise. In Conference on Learning Theory (COLT), pages 1802–1823.

[19] Kleinberg, R. D. (2005). Nearly tight bounds for the continuum-armed bandit problem. In
Advances in Neural Information Processing Systems, pages 697–704.

[20] Kotlowski, W. (2017). Scale-invariant unconstrained online learning. In Proceedings of the
International Conference on Algorithmic Learning Theory (ALT), pages 412–433.

[21] Lattimore, T. (2015). The pareto regret frontier for bandits. In Advances in Neural Information
Processing Systems, pages 208–216.

[22] McMahan, H. B. and Orabona, F. (2014). Unconstrained online linear learning in hilbert spaces:
Minimax algorithms and normal approximations. In Conference on Learning Theory (COLT),
pages 1020–1039.

[23] Orabona, F. and Pál, D. (2016). Coin betting and parameter-free online learning. In Advances
in Neural Information Processing Systems, pages 577–585.

[24] Saha, A. and Tewari, A. (2011). Improved regret guarantees for online smooth convex optimiza-
tion with bandit feedback. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 636–642.

[25] Van der Hoeven, D. (2019). User-specified local differential privacy in unconstrained adaptive
online learning. In Advances in Neural Information Processing Systems, pages 14080–14089.

[26] Van der Hoeven, D., Van Erven, T., and Kotlowski, W. (2018). The many faces of exponential
weights in online learning. In Conference on Learning Theory (COLT), pages 2067–2092.

[27] Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient
ascent. In International Conference on Machine Learning, pages 928–936.

10

A Details from section 2

Proof of Lemma 1. By definition we have

RT (u) =

T∑
t=1

〈wt − u, gt〉 =

T∑
t=1

〈zt, gt〉(vt − ‖u‖) + ‖u‖
T∑
t=1

〈zt −
u

‖u‖
, gt〉

=RVT (‖u‖) + ‖u‖RZT
(

u

‖u‖

)
.

B Details from section 3

Proof of Theorem 2. For any fixed u ∈ W , let r = max r′u
‖u‖∈W

r′. Note that by definition we have
‖u‖
r ∈ [0, 1] and ru

‖u‖ ∈ W . Therefore, similar to the proof of Lemma 1, we decompose the regret
against u as:

RT (u) =

T∑
t=1

〈wt − u, gt〉 =

T∑
t=1

〈zt, gt〉
(
vt −

‖u‖
r

)
+
‖u‖
r

T∑
t=1

〈zt −
ru

‖u‖
, gt〉,

which, by the guarantees of AV and AZ ,3 is bounded in expectation by

Õ

(
‖u‖
r
L
√
T +

‖u‖
r
dL
√
T

)
.

Finally noticing 1
c ≤ r by the definition of c finishes the proof.

C Details from section 4

Proof of Lemma 3. Denote by w̃t = vtzt. By Jensen’s inequality we have

T∑
t=1

E [`t(wt)− `t(u)] =E

[
T∑
t=1

`vtt (wt)− `t(u)

]
+

T∑
t=1

E [`t(wt)− `vtt (wt)]

≤
T∑
t=1

E [`vtt (wt)− `t(u)] .

(5)

We now continue under the assumption that `t is L-Lipschitz. After completing the proof of the first
equation of Lemma 3 we use the β-smoothness assumption to prove the second equation of Lemma
3.

3Note that the condition |〈zt, gt〉| ≤ 1 in Algorithm 4 indeed holds in this case since Z = W ⊆ B and
‖gt‖2 ≤ L by the Lipschitzness condition.

11

Using the L-Lipschitz assumption we proceed:

T∑
t=1

E [`vtt (wt)− `t(u)] ≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] +

T∑
t=1

E [`vtt (u)− `t(u)]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] + E[L|vt|‖δst‖2]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] + E[δL|vt|]

=

T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + E[δL|vt|]

+

T∑
t=1

E [`vtt (wt)− `vtt (w̃t)]

≤
T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + 2E[δL|vt|].

Now, by using the L-Lipschitz assumption once more we find that

T∑
t=1

E[`vtt ((1− α)u)− `vtt (u)] ≤ α‖u‖2TL (6)

By using equation (6), the convexity of `vtt , and Lemma 2 we continue with:

T∑
t=1

E [`t(wt)− `t(u)] ≤
T∑
t=1

E [〈w̃t − (1− α)u, ĝt〉] + 2E[δL|vt|] + α‖u‖2TL

=

T∑
t=1

E
[(
vt −

‖u‖
r

)
〈zt, ĝt〉

]
+ E

[
‖u‖
r
〈zt − ũ, ĝt〉

]

+

T∑
t=1

2E[δL|vt|] + α‖u‖2TL

=

T∑
t=1

E
[

¯̀
t(vt)− ¯̀

t

(
‖u‖
r

)]
+

T∑
t=1

‖u‖
r

E [〈zt − ũ, ĝt〉]

+ 2TδL
‖u‖
r

+ α‖u‖2TL

where ¯̀
t(v) = v〈zt, ĝt〉+ 2δL|v| as defined in Algorithm 5, ũ = r

‖u‖ (1− α)u, and r > 0 is such
that ur

‖u‖ ∈ Z .

Finally, by using the convexity of ¯̀
t, plugging in the guarantee of AV , and using Theorem 6 we

conclude the proof of the first equation of Lemma 3:

T∑
t=1

E [`t(wt)− `t(u)]

≤ 2TδL
‖u‖
r

+ E

[
T∑
t=1

(
vt −

‖u‖
r

)
∂ ¯̀
t(vt)

]
+
‖u‖
r

E

[
T∑
t=1

〈zt − ũ, ĝt〉

]
+ α‖u‖2TL

= Õ

(
1 + TδL

‖u‖
r

+
‖u‖
r
LV
√
T +

‖u‖dL
rδ

√
T + α‖u‖2TL

)
.

12

Next, we continue from equation (5) under the smoothness condition. Using the definition of
smoothness we find

T∑
t=1

E [`vtt (wt)− `t(u)] ≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] +

T∑
t=1

E [`vtt (u)− `t(u)]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] + E
[
1
2β|vt|

2‖δst‖22
]

=

T∑
t=1

E [`vtt (wt)− `vtt (u)] + E
[
1
2δ

2|vt|2β
]

=

T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + E
[
1
2δ

2|vt|2β
]

+

T∑
t=1

E [`vtt (wt)− `vtt (w̃t)]

≤
T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + E
[
βδ2|vt|2

]
.

Using equation (6), the convexity of `vtt , and Lemma 2 we continue with:
T∑
t=1

E [`t(wt)− `t(u)]

≤
T∑
t=1

E [〈w̃t − (1− α)u, ĝt〉] + E
[
βδ2|vt|2

]
+ α‖u‖2TL

=

T∑
t=1

E
[(
vt −

‖u‖
r

)
〈zt, ĝt〉

]
+ E

[
βδ2|vt|2

]
+

T∑
t=1

‖u‖
r

E [〈zt − ũ, ĝt〉] + α‖u‖2TL

= Tβδ2
(
‖u‖
r

)2

+

T∑
t=1

E
[

¯̀
t(vt)− ¯̀

t

(
‖u‖
r

)]
+

T∑
t=1

‖u‖
r

E [〈zt − ũ, ĝt〉] + α‖u‖2TL,

where ¯̀
t(v) = v〈zt, ĝt〉 + βδ2v2 as defined in Algorithm 5. Finally, by using the convexity of ¯̀

t,
plugging in the guarantee of AV , and using Theorem 6 we conclude the proof:

T∑
t=1

E [`t(wt)− `t(u)]

≤ Tβδ2
(
‖u‖
r

)2

+ E

[
T∑
t=1

(
vt −

‖u‖
r

)
∂ ¯̀
t(vt)

]
+
‖u‖
r

E

[
T∑
t=1

〈zt − ũ, ĝt〉

]
+ α‖u‖2TL

= Õ

(
1 + Tβδ2

(
‖u‖
r

)2

+
‖u‖
r
LV
√
T +

‖u‖
r

dL

δ

√
T + α‖u‖2TL

)
.

Theorem 6. Suppose that `t(0) = 0, that `t is L-Lipschitz for all t, and that Z ⊆ B. For

u ∈ (1− α)Z , Online Gradient Descent on (1− α)Z with learning rate η =
√

δ2

(dL)24T satisfies

E

[
T∑
t=1

〈zt − u, ĝt〉

]
≤2

dL

δ

√
T .

Proof. The proof essentially follows from the work of Zinkevich [27], Flaxman et al. [13] and using
the assumptions that `t(0) = 0 and that `t is L-Lipschitz. We start by bounding the norm of the

13

gradient estimate:

‖ĝt‖2 =
d

vtδ
|`t(wt)|‖st‖2

=
d

vtδ
|`t(vt(zt + δst))− `t(0)|

≤dL‖zt + δst‖2
δ

≤ dL(1− α+ δ)

δ

(7)

By using equation (7) and the regret bound of Online Gradient Descent [27] we find that
T∑
t=1

〈zt, ĝt〉 − min
z∈(1−α)Z

T∑
t=1

〈z, ĝt〉 ≤
(1− α)

2η
+
η

2

T∑
t=1

‖ĝt‖22

≤ (1− α)

2η
+
η

2

(
dL(1− α+ δ)

δ

)2

T

≤ 1

2η
+ 2η

(
dL

δ

)2

T

Plugging in η =
√

δ2

(dL)24T completes the proof.

C.1 Details of section 4.1

Proof of Theorem 3. First, since `t(0) = 0, `t is L-Lipschitz, and zt ∈ (1 − α)Z = (1 − α)B we
have that

〈zt, ĝt〉 ≤ ‖zt‖2‖ĝt‖2 ≤ (1− α)
dL(1− α+ δ)

δ
≤ 2dL

δ
, (8)

where the first inequality is the Cauchy-Schwarz inequality and the second is due to equation (7).
Since |∂ ¯̀

t(vt)| ≤ |〈zt, ĝt〉|+ 2δL = LV we can use Lemma 3 to find

E [RT (u)] = Õ

(
δTL‖u‖+ ‖u‖dL

δ

√
T + αTL‖u‖2

)
.

Plugging in α = 0 and δ = min{1,
√
dT−

1
4 } completes the proof.

Proof of Theorem 4. By equation (8) |〈zt, ĝt〉| ≤ 2dL
δ . Since vt ≤ 1

δ3 we have that

|∂ ¯̀
t(vt)| ≤

dL

δ
+ 2|vt|βδ2 ≤

dL+ 2β

δ
≤ β(dL+ 2)

δ

If ‖u‖2 ≤ 1
δ3 applying Lemma 3 with α = 0 gives us

E

[
T∑
t=1

`t(wt)− `t(u)

]
= Õ

(
1 + Tβδ2‖u‖2 + ‖u‖dLβ

δ

√
T

)
. (9)

If ‖u‖2 > 1
δ3 then using the Lipschitz assumption on `t and equation (9) with u = 0 gives us

E

[
T∑
t=1

`t(wt)− `t(u)

]
=E

[
T∑
t=1

`t(wt)− `t(0) + `t(0)− `t(u)

]
= Õ(1 + ‖u‖2LT)

= Õ(1 + ‖u‖22δ3LT),

(10)

where we used that ‖u‖2 ≥ 1
δ3 . Adding equations (9) and (10) gives

E

[
T∑
t=1

`t(wt)− `t(u)

]
= Õ

(
1 + ‖u‖22δ3LT + Tβδ2‖u‖2 + ‖u‖βdL

δ

√
T

)

14

Setting δ = min{1, (dL)1/3T−1/6} gives us

E

[
T∑
t=1

`t(wt)− `t(u)

]
= Õ

(
1 + max{‖u‖2, ‖u‖}β(dLT)

2
3 + max{‖u‖22, ‖u‖}dL2β

√
T
)
.

C.2 Details of section 4.2

Proof of Theorem 5. First, to see that zt + δst ∈ W recall that by assumptionW ⊆ B. Since α = δ
we have that zt + δst ∈ (1 − α)W + δS ⊆ (1 − δ)W + δW = W . For any fixed u ∈ W , let
r = max r′u

‖u‖∈W
r′. Note that by definition we have ‖u‖r ∈ [0, 1] and ru

‖u‖ ∈ W . By using equation

(8) we can see that |∂ ¯̀
t(vt)| ≤ dL

δ + 2δL. By definition, 1
r ≤ c. This implies that the regret of AV is

Õ
(

1 + ‖u‖
r

dL
δ

√
T
)

. Applying Lemma 3 with the parameters above we find

E

[
T∑
t=1

`t(wt)− `t(u)

]
= Õ

(
1 + (‖u‖2 + c‖u‖)TLδ + c‖u‖δL

√
T + c‖u‖dL

δ

√
T

)
.

Finally, setting δ = min{1,
√
dT−1/4} completes the proof:

E

[
T∑
t=1

`t(wt)− `t(u)

]
= Õ

(
1 + (‖u‖2 + c‖u‖)

√
dT 3/4 + c‖u‖dL

√
T
)
.

15

	Introduction
	Preliminaries
	Bandit Convex Optimization
	Black-Box Reductions with Full Information

	Comparator-Adaptive Linear Bandits
	Unconstrained Linear Bandits
	Constrained Linear Bandits

	Comparator-Adaptive Convex Bandits
	Unconstrained Convex Bandits
	Constrained convex bandits

	Conclusion
	Details from section 2
	Details from section 3
	Details from section 4
	Details of section 4.1
	Details of section 4.2

