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Abstract

Standard Local Differential Privacy:
•All uses have the same privacy requirements.
•Learner chooses how much privacy users have.

User-Specified Local Differential Privacy:
•All uses have the same privacy requirements.
•Learner chooses how much privacy users have.

Adaptive Unconstrained algorithms:
•Compete with u ∈ Rd.
•Adapt to unknown and varying noise.
•Data dependent bounds.
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Local Differential Privacy: Let A = (X1, . . . , XT ) be a sensitive dataset where
each Xt ∈ A corresponds to data about individual t. A randomiser R which
outputs a disguised version of S = (U1, . . . , UT ) of A is said to provide ε-local
differential privacy to individual t, if for all x, x′ ∈ A and for all S ⊆ S,

Pr(Ut ∈ S|Xt = x) ≤ exp(ε) Pr(Ut ∈ S|Xt = x′).

User specified LDP Unconstrained OCO:

Unconstrained comparator

Unknown to the learner
Only bounded in E

0. for t = 1, 2, . . . , T do
1. The learner sends wt ∈ Rd to the provider of the tth subgradient.
2. The provider chooses zero-mean and symmetrical ρt and samples ξt ∼ ρt.
3. The provider computes subgradient gt ∈ ∂`t(wt), where ‖gt‖? ≤ G.
4. The provider sends g̃t = gt + ξt ∈ Rd to the learner.

Objective : minimize expected regret w.r.t. oracle parameter u ∈ R

E[RT (u)] =

T∑
t=1

E[〈wt, g̃t〉 −
T∑
t=1

〈u, g̃t〉].

Goal : achieve adaptive expected regret bounds with unknown LDP requirements

E[RT (u)] = O

(
E[‖u‖

√√√√ T∑
t=1

‖g̃t‖2
? ln(1 + ‖u‖T ))]

)
.

Previous work with known ρt:

O(‖u‖
√

(G2 + max
t

E[‖ξt‖2])T ln(1 + ‖u‖T ))

Approach to Unconstrained OCO: Reward

Regret Duality

Lemma 1. If −E[
∑T

t=1〈wt, gt〉] ≥ E[FT (−
∑T

t=1 g̃t) − cT ] for some convex func-
tion FT and cT ∈ R, then E[RT (u)] ≤ E[cT ] + F ?

T (u).

The difficulty lies in finding a suitable FT and cT . A route for noisy subgradients
was provided by Jun and Orabona 2019: find an Ft, Ft−1, and wt that satisfy

Ft−1(x)− 〈wt, gt〉 ≥ Ẽ
gt

[Ft(x− g̃t)], (1)

then

E[FT (−
T∑
t=1

g̃t)] ≤ E[FT−1(−
T−1∑
t=1

g̃t)− 〈wT , gT〉] ≤ . . . ≤ E[F0(0)−
T∑
t=1

〈wt, gt〉]

gives us what we need to use Lemma 1!

1d Potential Function

Key inequality : suppose x is a symmetrical random variable with |E[〈v,x〉]| ≤
1
5 for some v. Then

E[exp(〈v,x〉 − 〈v,x〉2)] ≤ 1 + E[〈v,x〉]. (2)

Using (2) we can show that the following potential and predictions satisfy (1):
We use the 1d Potential function with (improper) prior P on v ∈ [− 1

5G,
1

5G]:

E[Ft(−
t∑

s=1

g̃s)] = E[ E
v∼P

[exp(−
t∑

s=1

vg̃s − (vg̃s)
2)− 1]].

Predictions:

wt = E
v∼P

[v exp(−
t−1∑
s=1

vg̃s − (vg̃s)
2)]. (3)

The proper priors we consider are of the form:

dP (v)

dv
∝ ν(v) exp(−bv2),

and improper prior:
dP (v)

dv
=

1

|v|
The predictions with prior dP (v)

dv ∝ exp(−bv2) satisfy:

E[RT (u)] ≤1 + |u|max

{
11G

(
ln(|u|11G)− 1 + ln

(√
5G
√
π

4
√
b

))
,

E


√√√√

8

(
b +

T∑
t=1

g̃2
t

)
ln(16|u|2

(
b +

T∑
t=1

g̃2
t

)3
2 √

π√
b

+ 1)

}.

A More Granular Randomiser

For more control over the privacy we employ the Local Laplace randomiser:

ρt(z) ∝ exp(−
d∑
j=1

τt,j
2
|zj|), where,

d∑
j=1

τt,j = εt, τt,j ≥ 0.

Application: Sparse Gradients

By running a copy of (3) in each dimension we obtain coordinate-wise we obtain an
algorithm with AdaGrad type guarantees:

E[RT (u)] ≤d +

d∑
j=1

|uj|max

{
11G

(
ln(|uj|11G)− 1 + ln

(√
5G
√
π

4
√
bj

))
,

E


√√√√

8

(
bj +

T∑
t=1

g̃2
t,j

)
ln(16|uj|2

(
bj +

T∑
t=1

g̃2
t,j

)3
2 √

π√
bj

+ 1))

}.
In conjunction with the local laplace randomiser this could lead to smaller regret
bounds if the privacy constraints match the sparsity.

Application: 1d to d Black-Box Reduction

We play vtwt, where vt is the prediction in (3) and ‖wt‖ ≤ 1 comes from a standard
OCO algorithm. By using the black-box reduction of Cutkosky and Orabona 2018 we
obtain:

E[RT (u)] =E

[
T∑
t=1

(vt − ‖u‖)〈zt, g̃t〉

]
︸ ︷︷ ︸

regret for learning‖u‖

+ E

[
T∑
t=1

〈zt −
u

‖u‖
, g̃t〉

]
︸ ︷︷ ︸

regret for learning u
‖u‖

=O

(
E[‖u‖

√√√√ T∑
t=1

‖g̃t‖2
? ln(1 + ‖u‖T ))]

)

Application: Private Adaptive Experts

Private expert setting:
1. Learner plays probability distribution pt over experts.
2. Experts sample ξt ∼ ρt
3. Experts receive their losses `t.
4. Experts send their perturbed losses ˜̀

t = `t + ξt to the learner.

The analysis of recent adaptive expert algorithms is closely related to the
analysis in this paper. Using this relationship we can easily derive private and adaptive
expert algorithms. Replace g̃t by the instantaneous regret r̃t(i) = 〈pt− ei, l̃t〉, where
˜̀
t = `t + ξt and `t is a vector containing the expert losses. If we play

pt(i) ∝ p1(i) E
v∼P

[v exp(−
t−1∑
s=1

vr̃t(i)− (vr̃t(i))
2)],

where P is a prior on v ∈ [0, 1
5G]

It can be shown that, by using (2) instead of the prod bound in the analysis of squint,
that the expected regret satisfies:

E [RT (i)] = O

E


√√√√ln(k)

T∑
t=1

r̃t(i)2





