User-Specified Local Differential Privacy in Unconstrained Adaptive Online Learning

Private Unconstrained Online Convex **Optimization with Noisy Subgradients**

Local Differential Privacy: Let $A = (X_1, \ldots, X_T)$ be a sensitive dataset where each $X_t \in A$ corresponds to data about individual t. A randomiser R which outputs a **disguised version** of $S = (U_1, \ldots, U_T)$ of A is said to provide ϵ -local differential privacy to individual t, if for all $x, x' \in A$ and for all $S \subseteq S$, $\Pr(U_t \in S | X_t = x) \le \exp(\epsilon) \Pr(U_t \in S | X_t = x').$

User specified LDP Unconstrained OCO:

Unconstrained comparator

0. for t = 1, 2, ..., T do 1. The learner sends $\boldsymbol{w}_t \in \mathbb{R}^d$ to the provider of the t^{th} subgradient. 2. The provider chooses zero-mean and symmetrical ρ_t and samples $\boldsymbol{\xi}_t \sim \rho_t$. 3. The provider computes subgradient $\boldsymbol{g}_t \in \partial \ell_t(\boldsymbol{w}_t)$, where $\|\boldsymbol{g}_t\|_{\star} \leq G$. 4. The provider sends $\tilde{\boldsymbol{g}}_t = \boldsymbol{g}_t + \boldsymbol{\xi}_t \in \mathbb{R}^d$ to the learner.

Only bounded in \mathbb{E}

Unknown to the learner

Objective : minimize expected **regret** w.r.t. oracle parameter $u \in \mathbb{R}$

$$E[\mathcal{R}_T(\boldsymbol{u})] = \sum_{t=1}^T \mathbb{E}[\langle \boldsymbol{w}_t, \tilde{\boldsymbol{g}}_t \rangle - \sum_{t=1}^T \langle \boldsymbol{u}, \tilde{\boldsymbol{g}}_t \rangle].$$

Goal : achieve adaptive expected regret bounds with unknown LDP requirements

$$\mathbb{E}[\mathcal{R}_T(\boldsymbol{u})] = O\left(\mathbb{E}[\|\boldsymbol{u}\| \sqrt{\sum_{t=1}^T \|\tilde{\boldsymbol{g}}_t\|_{\star}^2 \ln(1 + \|\boldsymbol{u}\|T))}\right).$$

Previous work with known ρ_t :

 $O(\|\boldsymbol{u}\|_{\sqrt{(G^2 + \max_t \mathbb{E}[\|\boldsymbol{\xi}_t\|^2])}T\ln(1 + \|\boldsymbol{u}\|T))$

Dirk van der Hoeven

Approach to Unconstrained OCO: Reward
Logret Dualityseries 1,
$$d = 0 \sum_{i=1}^{n} (u_i g_i) \geq |l|_{1}^{i_i} - \sum_{i=1}^{n} (h_i) = |u_i| for one comparesto r_i and $m \in L$, the 2 Actual 2 Actu$$

back to Unconstrained OCC: Reward

$$\begin{aligned} \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \sum_{\substack{n \geq j \\ n \neq 0}} (\mathbf{w}, p) \geq \mathbb{E}[\mathbf{x}^{n} \mid \mathbf{x}^{n} \mid \mathbf{w} \mid \mathbf{w} \mid \mathbf{w}^{n} \mid \mathbf{w}^$$

So Unconstrained OCO: Reward
Regret Duality

$$(w_0, y_0) \geq |x_{j+1} - y_{j+1}^{-1} - y_{j$$

Application: Sparse Gradients

$$\begin{aligned} p_{i}^{2} = p_{i}^{2} p_{i}^{$$

a

$$\frac{dP(v)}{dv} = \frac{1}{|v|}$$

Approach to Luconstrained OCO: Reward
Regret Duality
an
$$1, f \neq \Sigma^{(n)}(w, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$$
 is some non-optimation
and $j \in R$, where R , $k_{2} \leq \sum_{j=0}^{n} (k_{1}, j)$ is some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation
 $k = (x_{1} - (w_{1}, g) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation $k = (x_{1} - (w_{1}, j) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j)$ is the some non-optimation $k = (x_{1} - (w_{1}, j) \geq k_{1}^{(n)} = \sum_{j=0}^{n} (k_{1}, j) \in (x_{1}, j) \in (x_{1}, j) = \sum_{j=0}^{n} (k_{1}, j) \in (x_{1}, j) \in (x_{1}, j) = \sum_{j=0}^{n} (k_{1}, j) \in (x_{1}, j)$

ht to Unconstrained OCO: Reward
Regret Duality

$$\begin{aligned} f(x_{1}^{(i)}(x_{2})) &\leq h(x_{1}^{(i)}, x_{2}^{(i)}, y_{2}^{(i)}, y_{$$

$$ho_t(oldsymbol{z}) \propto \exp$$

$$(-\sum_{j=1}^{j}\frac{\tau_{t,j}}{2})$$

$$\propto \exp(-\sum_{i=1}^{n}$$

$$ip \left(\sum_{j=1}^{n} j \right)$$

JU

ret

we

Ve ere