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Motivation: Football prediction

I Every football match t there are K models that predict the
outcome of the match.

I Form probability distribution pt(k) and play the weighted
average of the K predictions: Ept(k)[wk ].

I After match: observe losses ft(wk) and suffer loss
ft(Ept(k)[wk ]).

I Improve probability distribution pt(k)→ pt+1(k) based on
observed losses.
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Online Convex Optimization

Parameters w take values in convex domain W.

1 for t = 1, 2, . . . ,T do

2 Learner predicts wt ∈ W

3 Observe convex loss function ft :W 7→ R

4 Learner suffers loss ft(wt)



Online Convex Optimization

Parameters w take values in convex domain W.

1 for t = 1, 2, . . . ,T do

2 Learner predicts wt ∈ W

3 Observe convex loss function ft :W 7→ R

4 Learner suffers loss ft(wt)

Objective: minimize regret w.r.t. oracle parameter u ∈ W

RT (u) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(u). (1)



How to control Regret?

I Convex loss function: Mirror Descent.

I Strongly convex loss functions: Gradient Descent.

I Exp-concave loss functions: Online Newton Step.

I Adaptive expert algorithms: Iprod, Squint, Coin Betting.

I Linear bandits: Mirror Descent with self concordant barrier
regularizer.



We all live an in exponentially weighted world

I Convex loss function: Mirror Descent.

I Strongly convex loss functions: Gradient Descent.

I Exp-concave loss functions: Online Newton Step.

I Adaptive expert algorithms: Iprod, Squint, Coin Betting.

I Linear bandits: Mirror Descent with self concordant barrier
regularizer.

We say:

Mirror Descent
Gradient Descent
Online Newton Step
Squint, Coin Betting
MD self concordant

 = Exponential Weights
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Exponential Weights

Input: a convex set of distributions P over w, a prior P1 ∈ P and
learning rates η1 ≥ η2 ≥ · · · ≥ ηT > 0

Lazy:

1 update step:
P̃t+1 = arg minP EP

[∑t
s=1 fs(w)

]
+ 1

ηt
KL(P‖P1)

2 projection step:
Pt+1 = arg minP∈P KL(P‖P̃t+1)

Greedy:

1 update step:
P̃t+1 = arg minP EP [ft(w)] + 1

ηt
KL(P‖Pt)

2 projection step:
Pt+1 = arg minP∈P KL(P‖P̃t+1)



Exponential Weights

The algorithm gets its name from the distributions P̃t , whose
densities have the following exponential forms:

dP̃t+1(w) =
e−ηt

∑t
s=1 fs(w) dP1(w)∫

e−ηt
∑t

s=1 fs(w) dP1(w)
(lazy EW)

dP̃t+1(w) =
e−ηt ft(w) dPt(w)∫
e−ηt ft(w) dPt(w)

(greedy EW).



Regret Exponential Weights
Let Q ∈ P be any comparator distribution such that
KL(Q‖P̃t) <∞ for all t, let {wt ∈ W}Tt=1 be the actions of any

learner, and define η0
def
= η1. Then lazy EW satisfies

E
u∼Q

[R(u)] ≤ 1

ηT
KL(Q‖P1)+

T∑
t=1

{
ft(wt) + 1

ηt−1
ln E

Pt(w)

[
e−ηt−1ft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
.

Greedy EW satisfies:

E
u∼Q

[R(u)] ≤ 1

η1
KL(Q‖P1) +

(
1

ηT
− 1

η1

)
max

t=2,...,T
KL(Q‖Pt)

+
T∑
t=1

{
ft(wt) + 1

ηt
ln E

Pt(w)

[
e−ηt ft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
.



Regret Exponential Weights

Proof structure in most settings

I Bound the mixability gap

I Find Q for which the expected loss under Q together with
KL(Q‖P1) can be related to the loss of a deterministic
comparator.

Unless specified otherwise

I wt = EPt [w]

I P = {P : EP [w] ∈ W}
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Convex losses

A standard approach in OCO is to lower-bound the convex losses ft
by their tangent at wt :

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

(
〈wt , gt〉 − 〈u, gt〉

)
,

where gt = ∇ft(wt)



Standard approach: Mirror Descent

I BF∗(u‖w) = F ∗(u)− F ∗(w)−∇F ∗(w)ᵀ(u−w) denotes
the Bregman divergence generated by F ∗.

I F ∗(w) = supθ〈w,θ〉 − F (θ) denotes the convex conjugate of
F .

Lazy Mirror Descent:

w̃t+1 = arg min
w

∑t
s=1〈w, gs〉+ 1

ηt
BF∗(w‖w1)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1).

Greedy Mirror Descent:

w̃t+1 = arg min
w
〈w, gt〉+ 1

ηt
BF∗(w‖wt)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1).



Interpretation Mirror Descent

Common choices for F :

I Gradient Descent: F (θ) = 1
2‖θ‖

2
2

I Unnormalized Relative entropy: F (θ) =
∑d

i=1 e
θi

I Exponentiated Gradient (±): F (θ) = log(
∑d

i=1 e
θi )



Mirror Descent as Exponential Weights

We consider prior from exponential families:

I Have form E = {Pθ | dPθ(w) = e〈θ,w〉−F (θ)dK (w),θ ∈ Θ}

I Nonnegative carrier measure K

I Cumulant generating function F (θ) = ln
∫
e〈θ,w〉dK (w)

I Parameter space Θ = {θ | F (θ) <∞} ⊂ Rd

I Called regular if Θ is an open set



Mirror Descent as Exponential Weights

Theorem

Suppose F is the cumulant generating function of a regular
exponential family E . Then the lazy and greedy versions of MD
predict with the means wt = EPt [w] of lazy and greedy EW on the
linearized losses with the same ηt , prior Pθ1 for θ1 = ∇F ∗(w1) and
P = {P : EP [w] ∈ W}.

Lazy EW:

E
Pt+1

[w] = wt+1 = arg min
w∈W

∑t
s=1〈w, gs〉+ 1

ηt
BF∗(w‖w1)

Greedy EW:

E
Pt+1

[w] = wt+1 = arg min
w∈W

〈w, gt〉+ 1
ηt
BF∗(w‖wt)



Greedy MD as Greedy EW proof

We can restrict P to an exponential family:

min
P∈P

{
E
P

[〈w, gt〉] +
1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P :EP [w]=µ

{
E
P

[〈w, gt〉] +
1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P∈E :EP [w]=µ

{
〈µ, gt〉+

1

ηt
KL(P‖Pt)

}
,

where the last equality is due to Theorem 3.1.4 in Ihara (1993).



Greedy MD as Greedy EW proof

To finish the proof we use a result from Banerjee et al. (2005);
Nielsen and Nock (2010). Let µP = EP [w]. For Q,P ∈ E :

KL(P‖Q) = BF (θQ‖θP) = BF∗(µP‖µQ).

We now have:

Pt+1 = arg min
P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
KL(P‖Pt)

}
= arg min

P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
BF∗(µP‖µPt )

}
,

which coincides with the definition of greedy Mirror Descent.



MD as EW interpretation

Before we had:

I Gradient Descent: F (θ) = 1
2‖θ‖

2
2

I Unnormalized Relative entropy: F (θ) =
∑d

i=1 e
θi

I Exponentiated Gradient (±): F (θ) = log(
∑d

i=1 e
θi )

Now we have:

I Gradient Descent: Gaussian Prior

I Unnormalized Relative entropy: Poisson Prior

I Exponentiated Gradient (±): Multinomial Prior (1 trial)
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Quadratic losses

We assume that the losses ft satisfy quadratic lower bounds:

ft(w)− ft(wt) ≥ 〈w−wt , gt〉+
1

2
(w−wt)

ᵀMt(w−wt) =: `t(w),

where Mt is a positive semi-definite matrix.

We treat two cases:

I α-strongly convex loss functions: Mt = αI

I α-exp concave loss functions: Mt = βgtg
T
t , where

β = 1
2 min{ 1

4GB , α}, assuming ‖gt‖2 ≤ G and
B = maxw,u∈W ‖w − u‖2



Quadratic losses: Gaussian prior

Theorem

Let P1 = N (w1,Σ1). Both versions of the Exponential Weights
algorithm, run on `t with learning rate η and
P = {P : EP [w] ∈ W}, yield a multivariate normal distribution
Pt+1 = N (wt+1,Σt+1). Furthermore for all u ∈ Rd both versions
of EW satisfy:

RT (u) ≤ 1

2η
(w1 − u)ᵀΣ−11 (w1 − u) +

η

2

T∑
t=1

gᵀt Σt+1gt . (2)



Quadratic losses: Gaussian prior

Lazy EW Gaussian prior:

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = w̃t − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)

Greedy EW Gaussian prior:

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = wt − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)



Strongly convex loss functions

I For α-strongly convex loss functions the standard approach is
to use Greedy Gradient Descent with learning rates
ηt = 1/(αt) (Hazan et al., 2007)

I Greedy EW on `t(w) with fixed learning rate η and Gaussian
prior P1 = N (0, σ2I) yields greedy GD with
ηt = 1/( 1

ησ2 + αt)

I Regret EW: RT (u) ≤ G2

2α ln

(
1
ησ2+αT

1
ησ2+α

)
+ G2

2
ησ2+2α

+ D2

2ησ2

I The standard learning rate and corresponding regret bound for
GD (Hazan et al., 2007) correspond to the limiting case
ησ2 →∞



Exp-concave loss functions

I For α-exp-concave loss functions the standard approach is to
use the Online Newton Step algorithm (Hazan et al., 2007)

I Exponential Weights on `t(w) with Gaussian prior N (0, σ2I)
leads to the Online Newton Step algorithm

I Regret EW: RT (u) ≤ d
2β ln

(
1 + ησ2βG2T

d

)
+ D2

2ησ2

I To obtain the standard regret bound set ησ2 = βD2
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Expert setting

I Linear losses ft(w) = 〈w, gt〉 over the simplex
W = {w : wi ≥ 0,

∑d
i=1 wi = 1}, with gt,i ∈ [0, 1]

I Instantaneous regret in round t with respect to expert i is
rt(i) = ft(wt)− ft(ei )

I Total Regret RT (i) =
∑T

t=1 rt(i)



Adaptive algorithms

I Standard algorithms requires the learner to specify η

I η usually specified to guard against worst case, algorithm may
be slow to converge

I To specify η one may require knowledge of unknown quantities

Solution: learn the optimal η.



Adaptive algorithms regret

Define VT (i) =
∑T

t=1 rt(i)
2.

I Iprod, Squint:

E
π̂

[
RT (i)

]
= O

(√
E
π̂

[VT (i)]
(

KL(π̂‖π) + ln lnT
))

I Coin Betting:

E
π̂

[RT (i)] ≤
√

3T (KL(π̂‖π) + 3)



Surrogate Task

I Surrogate loss: `t(η, i) = − ln (1 + ηrt(i))

I Predictions take the form of joint distributions Pt on (η, i) for
η ∈ [0, 1]

I Map back to predictions in the original task via wt =
EPt [ηei ]
EPt [η]

I Aim: achieve small mix-regret with respect to any comparator
distribution Q on (η, i)



Mix regret

Mix regret:

S(Q) =
T∑
t=1

− ln E
Pt

[
e−`t(η,i)

]
− E

Q

[ T∑
t=1

`t(η, i)
]
.

If the learner can guarantee

0 ≤
T∑
t=1

E
Q

[`t(η, i)] + S(Q)

then use − ln(1 + x) ≤ −x + x2 for |x | ≤ 1
2 to obtain:

0 ≤
T∑
t=1

E
Q

[−ηrt(i) + η2rt(i)
2] + S(Q)



EW is the solution

How to guarantee 0 ≤
∑T

t=1 EQ [`t(η, i)] + S(Q)?

Use Exponential weights on `t with predictions wt =
EPt [ηei ]
EPt [η]

:

T∑
t=1

E
Q

[`t(η, i)] + S(Q) =
T∏
t=1

E
Pt

[
e−`t(η,i)

]
=

T−1∏
t=1

E
Pt

[
e−`t(η,i)

]
E
PT

[
1 + ηrT (i)

]
= 0



EW is the solution

I Since the surrogate loss is 1-exp-concave there is no mixability
gap to pay

I Running EW with constant learning rate 1 on `t achieves
S(Q) ≤ KL(Q‖P1) for any Q

This gives

T∑
t=1

E
Q

[ηrt(i)] ≤
T∑
t=1

E
Q

[η2rt(i)
2] + KL(Q||P1)



Regret Iprod

Theorem

If we use EW in the surrogate OCO task with learning rate 1 and
any product prior P1 = γ × π for γ a distribution on η ∈ [0, 12 ] and
π a distribution on i , and we take as comparator
Q = γ(η | η ∈ [η̂/2, η̂])× π̂ for any η̂ ∈ [0, 12 ] and distribution π̂ on
i that can both depend on all the losses, then

E
π̂

[
RT (i)

]
≤ 2η̂ E

π̂
[VT (i)] +

2

η̂

(
KL(π̂‖π)− ln γ([η̂/2, η̂])

)
. (3)

After optimizing η̂, this leads to an adaptive regret bound of

E
π̂

[
RT (i)

]
= O

(√
E
π̂

[VT (i)]
(

KL(π̂‖π) + ln lnT
))

for all π̂



Squint

I EW with a continuous prior on η for the iProd surrogate
losses requires evaluating a t-degree polynomial in η in every
round: O(T 2) total running time

I By choosing the slightly larger surrogate loss
`t(η, i) = −ηrt(i) + η2rt(i)

2 we turn Iprod into Squint: O(T )
total running time

I Exactly the same regret guarantees as iProd:

E
π̂

[
RT (i)

]
= O

(√
E
π̂

[VT (i)]
(

KL(π̂‖π) + ln lnT
))

for all π̂



Coin betting

We study a variant of the Coin Betting algorithm for experts of
Orabona and Pál (2016)

I Idea: Split the learning of η ∈ [0, 1] and i into separate steps

I restrict Pt(η | i) to be a point mass on some ηit

I Choose ηit to achieve small regret for the surrogate loss

`it(η) = −1 + rt(i)

2
ln

1 + η

2
− 1− rt(i)

2
ln

1− η
2
− ln 2

I Learn i for the surrogate losses ˜̀
t(i) = − ln(1 + ηitrt(i))



Mix-regret Coin Betting

For η ∈ [0, 1] and π̂ a distribution on i , let

S i
T (η) =

T∑
t=1

`it(η
i
t)−

T∑
t=1

`it(η) (regret log loss)

S̃T (π̂) =
T∑
t=1

− ln E
i∼Pt

[
e−

˜̀t(i)
]
− E

π̂

[ T∑
t=1

˜̀
t(i)
]

be the mix-regret in the two surrogate OCO tasks.



Regret Coin Betting

Theorem

If we use EW with learning rate 1 and prior π on i for the losses ˜̀
t ,

and for the losses `it we let ηit be the mean of lazy EW with
learning rate 1 and with prior on η ∈ [−1,+1] such that 1+η

2 has a

beta-distribution β(a, a) with a = T
4 + 1

2 and with projections onto
P = {P | EP [η] ∈ [0, 1]}, then

E
π̂

[RT (i)] ≤
√

3T (KL(π̂‖π) + 3) for any π̂ on i.



Resulting algorithm

I EW on `it with the (conjugate) β(a, a) prior is a generalization

of the Krichevsky-Trofimov estimator with mean Rt−1(i)
t−1+2a

I Lazily projecting onto η ∈ [0, 1] simply amounts to clipping at
0

I Combining the above we get ηit = max
{
Rt−1(i)
t−1+2a , 0

}
I Predict with wt =

EPt (i)
[ηitei ]

EPt (i)
[ηit ]



Interpretation Regret Coin Betting

We can now explain three design choices by Orabona and Pál
(2016):

I δ-shifted KT-Potential function: naturally arises in our proof
when we bound the regret S i

T (R+
T (i)/T ) for EW

I The choice for δ, which is simply specifying a prior with most
mass in a region of order 1/

√
T around η = 0

I The clipping of the unnormalized weights p̃t(i)η
i
t to 0 when

Rt−1(i) < 0, which in our presentation happens automatically
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Online Linear Optimization with Bandit Feedback

I Linear losses ft(w) = 〈w, gt〉 ∈ [−1,+1]

I Instead of seeing the vectors gt we only observe the loss
ft(wt) for the algorithm’s choice wt

I The algorithm is allowed to randomize its choice wt

I Goal: minimize the expected regret E[RT (u)], where the
expectation is with respect to the algorithm’s randomness

Standard solution SCRiBLe (Abernethy et al., 2012):

I Mirror Descent with self concordant barrier function F ∗

I Sample based on the spectrum of the Hessian of F ∗



Sampling from EW distribution

We consider the EW algorithm with fixed learning rate η and
uniform prior distribution P1 over W. Let R be a fixed
“exploration” distribution chosen to be John’s exploration.

1 for t = 1, 2, . . . ,T do

2 Sample wt ∼ Qt , where Qt = (1− γ)Pt + γR

3 Observe ft(wt) = 〈wt , gt〉

4 Constructs a random unbiased estimate g̃t

5 Update Pt to Pt+1 based on f̃t(wt) = 〈wt , g̃t〉



Linear Bandits with EW

When η and γ are appropriately chosen, this algorithm achieves
expected regret of order O(d

√
T lnT ), which is the best known

expected regret.

Compared to SCRiBLe:

I Instead of sampling from the spectrum of the Hessian we
sample from the EW distribution

I We achieve a regret bound that is a factor O(
√
d) better

I A proof outline of this fact was given by Bubeck and Eldan
(2015); to complete our story of EW we spell out the proof
details.



Concluding Remarks

On average, we all live in an exponentially weighted world.
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