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Setting: Online Linear Optimization

We consider the Online Linear Optimization setting, which
proceeds in rounds t = 1, . . . ,T . In each round t we

1 Choose a point wt ∈ K ∈ realsd , where K is a convex set.

2 Receive gradient of convex loss function gt = ∇ft(wt)

3 suffer loss 〈wt , gt〉

Goal: keep regret RT (u) small

RT (u) =
T∑
t=1

〈wt , gt〉 − min
u∈K

T∑
t=1

〈u, gt〉



Motivation

The Online Linear Optimization setting has many uses, among
them are training neural networks 1, gambling 2, spam filtering 3,
and portfolio selection4.

1
Neural network image by LearnDataSci from www.learndatasci.com

2
Gambling image by History Channel from http://www.history.com/news/ask-history/where-did-poker-originate

3
Spam image by Qwertyxp2000 from https://commons.wikimedia.org/wiki/File:Spam_can.png

4
stock market image by James Smith from https://pixabay.com/en/business-stock-finance-market-1730089/

 www.learndatasci.com
http://www.history.com/news/ask-history/where-did-poker-originate
https://commons.wikimedia.org/wiki/File:Spam_can.png
https://pixabay.com/en/business-stock-finance-market-1730089/


Algorithms

Under appropriate conditions RT (u) = O(
√
T )

Multiple algorithms:

1. Online Gradient Descent.

2. Mirror Descent.

3. Exponential Weights.



Problem

I Usually Gradient Descent and Exponential Weights are seen
as special cases of Mirror Descent.

I Koolen (2016) found that Gradient Descent can be seen as a
special case of Exponential Weights.

I Some interesting implications, but since Gradient Descent is a
special case of Mirror Descent this also raises the following
question:

Is Mirror Descent a special case of Exponential Weights?



Mirror Descent

Choose suitable Legendre function F ∗. Initialize
w1 = arg minw F ∗(w), then update with:

wt+1 = (∇F ∗)−1
(
∇F ∗(wt)− ηgt

)

When F ∗(wt) = 1
2 ||wt ||22 we obtain Gradient Descent:

wt+1 = wt − ηgt ,



Prediction with Expert Advice

I A special case of the Online Linear Optimization setting: The
weight vector wt as a probability distribution pt on experts
k = 1, . . . ,K .

I We choose a specific loss function: E
k∼pt

[〈ek , gt〉], where ek is

the basis vector in direction k and gk
t is the loss of expert k at

time t.

I Same goal as in Online Linear Optimization, find an algorithm
that has regret that grows sub-linear with T .



Exponential Weights

Initialize pt with prior distribution π, then update with:

pt+1(k) =
π(k) exp(−η

∑t
i=1 g

k
i )∑K

k=1 π(k) exp(−η
∑t

i=1 g
k
i )
,

where η is the learning rate. Usually, π is chosen as the uniform
distribution over the experts.



Different interpretation

I A non-standard interpretation of Exponential Weights arises if
we use a non-uniform prior over a continuous set of experts
parametrized by z ∈ K.

I We use the mean of pt+1 as weights wt+1.

I With a multivariate normal distribution as a prior the mean of
Exponential Weights is the Gradient Descent algorithm.



Setup

In the Online Linear Optimization setting, in each round t expert z
receives loss 〈z, gt〉.

Our loss becomes:

Ez∼pt [〈z, gt〉] = 〈Ez∼pt [z], gt〉
= 〈wt , gt〉.

We update π with:

pt+1(z) =
π(z) exp(−η

∑t
i=1〈z, gi 〉)∫

K π(z) exp(−η
∑t

i=1〈z, gi 〉)dz
.



Prior from an exponential family

Many distributions such as the normal, poisson, exponential,
gamma, multinomial and many more can be written in the
exponential family form:

p(z) = e〈θ,T (z)〉−F (θ)K (z),

where θ is the natural parameter, T (z) is the sufficient statistic,
F (θ) is the cumulant generating function, and K (z) is the carrier
measure.

Mean: Ep[z] = ∇F (θ)



Main Result

Theorem
Let pt+1 be the Exponential Weights distribution at time t + 1
with a prior from an exponential family. Let Mirror Descent be
used with F ∗, the convex conjugate of cumulant generating
function F . Then the Mirror Descent algorithm is the mean of the
Exponential Weights algorithm:

E
z∼pt+1

[z] = wt+1 = ∇F
(
∇F ∗(wt)− ηgt

)
.



Example

With a standard multivariate normal prior the Exponential Weights
distribution at time t + 1 is: pt+1(z) = N(z |wt+1, I ). The
cumulant generating function is:

F (
t∑

i=1

gt) =
1

2
||

t∑
i=1

gt ||22

This gives the following mean:

E
z∼pt+1

[z] = (∇F ∗)−1
(
∇F ∗(wt)− ηgt)

)
= wt − ηgt .



Applications of main result

1. Efficient sampling in the Linear Bandit setting

2. Nice theoretical properties of cumulant generating functions
(self-concordant barriers)

3. Prior on the learning rate (exploit easy cases!)

4. Scale free algorithms (scaling of the loss becomes irrelevant)



Conclusion

A large class of Online optimization algorithms is like learning
distributions.
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Interpretation Gradient Descent

Gradient Descent does not learn the variance!

Can we learn the variance? Yes, with the online Newton algorithm:

pt+1(z) = N(z |wt+1,
( t∑
i=1

cgtg
T
t

)−1
)


