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Setting: Online Linear Optimization

We consider the Online Linear Optimization setting, which
proceeds in rounds t = 1,..., T. In each round t we

1 Choose a point w; € K € reals?, where K is a convex set.
2 Receive gradient of convex loss function g; = Vf(w;)
3 suffer loss (w¢, g¢)

Goal: keep regret R (u) small
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Motivation

The Online Linear Optimization setting has many uses, among
them are training neural networks !, gambling 2, spam filtering 3,
and portfolio selection®.

Neural network image by LearnDataSci from wiw. learndatasci . con
Gambling image by History Channel from http://ww. history. con/news/ask-history/vhere-did-poker-originate

Spam image by Qwertyxp2000 from https://commons . wikimedia.org/wiki/File:Span_can.png
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stock market image by James Smith from https://pixabay. con/en/business-stock-f inance-market-1730089/
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Algorithms

Under appropriate conditions R7(u) = O(v/T)
Multiple algorithms:

1. Online Gradient Descent.

2. Mirror Descent.

3. Exponential Weights.



Problem

» Usually Gradient Descent and Exponential Weights are seen
as special cases of Mirror Descent.

» Koolen (2016) found that Gradient Descent can be seen as a
special case of Exponential Weights.

» Some interesting implications, but since Gradient Descent is a
special case of Mirror Descent this also raises the following
question:

Is Mirror Descent a special case of Exponential Weights?



Mirror Descent

Choose suitable Legendre function F*. Initialize
wy = argmin,, F*(w), then update with:

weyy = (VF) ™ (VF*(wt) - 779t>
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When F*(w;) = 3||w;||3 we obtain Gradient Descent:

Wiyl = Wt — NG,



Prediction with Expert Advice

> A special case of the Online Linear Optimization setting: The
weight vector w; as a probability distribution p; on experts
k=1,....K.

» We choose a specific loss function: kIE [(ex,gt)], where ey is
~pt

the basis vector in direction k and glf‘ is the loss of expert k at
time t.

» Same goal as in Online Linear Optimization, find an algorithm
that has regret that grows sub-linear with T.



Exponential Weights

Initialize p; with prior distribution m, then update with:

(k) exp(=13i_; &)
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where 7 is the learning rate. Usually, 7 is chosen as the uniform
distribution over the experts.

pr+1(k) =



Different interpretation

» A non-standard interpretation of Exponential Weights arises if
we use a non-uniform prior over a continuous set of experts
parametrized by z € K.

» We use the of pry1 as weights wi4q.

» With a multivariate normal distribution as a prior the mean of
Exponential Weights is the Gradient Descent algorithm.



Setup

In the Online Linear Optimization setting, in each round t expert z
receives loss (z, g;).

Our loss becomes:

Eznpl(2,96)] = (Bznp[2], gt)
= <wt7 gt>'

We update 7 with:

pe+1(2) = m(z) exp(—n Y i1(2,91)) .
f;c m(2) exp(—n Z;:1<z7 gi))dz



Prior from an exponential family

Many distributions such as the normal, poisson, exponential,
gamma, multinomial and many more can be written in the
exponential family form:

p(z) = 0T FOK(z)

where 6 is the natural parameter, T(z) is the sufficient statistic,
F(0) is the cumulant generating function, and K(z) is the carrier
measure.

Mean: E,[z] = VF(0)



Main Result

Theorem

Let p:+1 be the Exponential Weights distribution at time t + 1
with a prior from an exponential family. Let Mirror Descent be
used with F*, the convex conjugate of cumulant generating
function F. Then the Mirror Descent algorithm is the mean of the
Exponential Weights algorithm:

E [2] = wesr = VF(VF*(wt) - ngt).
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Example

With a standard multivariate normal prior the Exponential Weights
distribution at time t + 1 is: py1+1(z) = N(z|wet1,1). The
cumulant generating function is:

t t
1
F(th) = §|| Zmll%
i=1 i=1

This gives the following mean:

E [z] = (VF) ™ (VF (we) —ngt))

2~ Pt+1

= Wt — NgGt-



Applications of main result

1. Efficient sampling in the Linear Bandit setting

2. Nice theoretical properties of cumulant generating functions
(self-concordant barriers)

3. Prior on the learning rate (exploit easy cases!)

4. Scale free algorithms (scaling of the loss becomes irrelevant)



Conclusion

A large class of Online optimization algorithms is like learning
distributions.
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Interpretation Gradient Descent

Gradient Descent does not learn the variancel

Can we learn the variance? Yes, with the online Newton algorithm:

t
pesa(2) = Nizhwerr, (3 caegl) )
i—1



